Age of Earth, 2

A. Eremenko

December 9, 2021

In his paper, Kelvin gives long physical arguments justifying his flat Earth approximation.

Let us solve the heat equation in a ball $|x|<R$ in 3 space, with zero boundary condition and constant initial condition:

$$
\begin{gathered}
u_{t}=k \Delta u \\
u(x, 0)=T \\
u(x, t)=0 \text { for }|x|=R
\end{gathered}
$$

The solution is spherically symmetric: it is a function of $r=|x|$ only. To separate the variables, set

$$
u(x, t)=f(t) g(r)
$$

then

$$
\begin{equation*}
f^{\prime}=-\lambda k f \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
r g^{\prime \prime}+2 g^{\prime}+\lambda r g=0 \tag{2}
\end{equation*}
$$

Here $\lambda>0$ (the Earth cools!) and we have the boundary conditions $g(R)=0$ and $g(0)$ is finite.

This can be reduced to Bessel's equation, but it is easier to apply the power series method directly.

Equation (2) has a regular singularity at 0 , with exponents $0,-1$. The negative exponent has to be rejected, because $g(0)$ must be finite.

Thus

$$
g(r)=\sum_{0}^{\infty} a_{n} r^{n}
$$

and substituting this to the equation we obtain

$$
\sum_{2} n(n-1) a_{n} r^{n}+2 \sum_{1} n a_{n} r^{n}+\lambda \sum_{2} a_{n-2} r^{n}=0
$$

As there is only one term with r, we conclude that $a_{1}=0$. Then we obtain a recurrence:

$$
\left(n^{2}+n\right) a_{n}=-\lambda a_{n-2} .
$$

From the recurrence we obtain that $a_{n}=0$ for all odd n. For even n, the recurrence is easily solved:

$$
a_{2 n}=(-1)^{n} \lambda^{n}(2 n+1)!.
$$

Thus

$$
g(r)=\sum_{0}^{\infty} \frac{(-1)^{n}(r \sqrt{\lambda})^{2 n}}{(2 n+1)!}=\frac{\sin (r \sqrt{\lambda})}{r \sqrt{\lambda}}
$$

Using the boundary condition $g(R)=0$ we obtain

$$
\lambda_{n}=\frac{\pi^{2} n^{2}}{R^{2}}, \quad n=1,2,3 \ldots
$$

Therefore

$$
u(x, t)=\frac{1}{r} \sum_{1}^{\infty} b_{n} \exp \left(-\frac{k \pi^{2} n^{2} t}{R^{2}}\right) \sin \frac{\pi n r}{R} .
$$

Using the initial condition we obtain that

$$
\operatorname{Tr}=\sum_{1}^{\infty} b_{n} \sin \frac{\pi n r}{R}, \quad 0<r<R
$$

so by Fourier formulas

$$
b_{n}=\frac{2 T}{R} \int_{0}^{R} r \sin \frac{\pi n r}{R} d r=\frac{2 T R}{\pi n}(-1)^{n+1}
$$

so

$$
u(x, t)=\frac{2 T R}{\pi r} \sum_{1}^{\infty} \frac{(-1)^{n+1}}{n} \exp \left(\frac{-k \pi^{2} n^{2} t}{R^{2}}\right) \sin \frac{\pi n r}{R}
$$

and

$$
u_{r}(R, t)=-\frac{2 T}{R} \sum_{1}^{\infty} \exp \left(-\frac{k \pi^{2} n^{2} t}{R^{2}}\right)
$$

We cannot just pass to the limit as $r \rightarrow \infty$ term by term, because the RHS becomes divergent when $R=\infty$.

To obtain an approximation when $R \rightarrow \infty$, we use the Poisson summation formula ("Fourier Transform", section 7):

$$
\sum_{-\infty}^{\infty} e^{-a n^{2}}=\sqrt{\frac{\pi}{a}} \sum_{n=-\infty}^{\infty} e^{-\pi^{2} n^{2} / a}
$$

with $a=k \pi^{2} t / R^{2}$. This gives

$$
\lim _{R \rightarrow \infty} u_{r}(R, t)=-\frac{T}{\sqrt{\pi k t}}
$$

as Kelvin obtained by assuming $R=\infty$ from the beginning.

