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Abstract

This is an expanded version of one of the Lectures in memory
of Lars Ahlfors in Haifa in 1996. Some mistakes are corrected and
references added.

This article is an exposition for non-specialists of Ahlfors’ work in the
theory of meromorphic functions. When the domain is not specified we mean
meromorphic functions in the complex plane C.

The theory of meromorphic functions probably begins with the book by
Briot and Bouquet [18] where the terms “pole”, “essential singularity” and
“meromorphic” were introduced and what is known now as the Casorati–
Weierstrass Theorem was stated for the first time. A major discovery was
Picard’s theorem (1879) which says that a meromorphic function omitting
three values in the extended complex plane C̄ is constant. The modern
theory of meromorphic functions begins with attempts to give an “elementary
proof” of this theorem. These attempts culminated in R. Nevanlinna’s theory
which was published first in 1925. Nevanlinna’s books [46] and [47] were very
influential and shaped much of the research in function theory in this century.
Nevanlinna theory, also known as value distribution theory, was considered as
one of the most important areas of research in 1930-40, so it is not surprising
that Ahlfors started his career with work in this subject (besides he was
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Nevanlinna’s student). There are two very good sources about this early
work of Ahlfors, the first being Volume 1 of his collected papers [1], where
most of the papers have been supplied with Ahlfors’ own commentaries, the
second Drasin’s article [23]. I used both sources substantially in preparing
this lecture, trying to minimize intersections with Drasin’s survey.
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1. Type problem

All Ahlfors’ papers on the theory of meromorphic functions are written in
the period 1929-1941 and they are unified by some general underlying ideas.
The central problem is the problem of type. And the main method is the
Length – Area Principle in a broad sense. We start with explanation of the
type problem.

According to the Uniformization theorem every open simply connected
abstract Riemann surface1 R is conformally equivalent to the complex plane
C or to the unit disk U. In the first case R is said to have parabolic type and
in the second case – hyperbolic type. Now assume that a Riemann surface
is given in some explicit way. How do we recognize its type? This is the
formulation of the type problem, which occupied a central place in function
theory in 1930-50. Ahlfors in [1, p. 84] gives credit to A. Speiser [52] for this
formulation.

One very natural explicit way of describing a Riemann surface is this: let
R be an abstract surface2 and let

π : R → C̄(1.1)

be a topologically holomorphic map, which means that every point x0 ∈ R
has a neighborhood V and a local coordinate z : V → C, z(x0) = 0 such
that f(x) = zm(x) in V , where m is a positive integer. Points x0 for which
m 6= 1 are called critical points. There is a unique conformal structure on R
which makes π meromorphic.

The intuitive image connected with (1.1) is the Riemann surface “spread
out over the sphere”, which is an awkward English equivalent of “Über-
lagerungsfläche”. We think of R as a union of pieces of spheres (sheets)
placed over the sphere C̄ such that π is the vertical projection. The sheets are
pasted together respecting the projection π. This is how Riemann surfaces
are usually introduced in elementary textbooks as Riemann surfaces of multi-
valued functions.

In what follows we reserve the term “Riemann surface” for a pair (R, π)
as in (1.1). We shall frequently use conformal metrics on a Riemann surface;
these are Riemannian metrics compatible with the conformal structure. In

1Connected one dimensional complex analytic manifold
2Two real-dimensional orientable triangulable topological manifold
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local coordinates such metric is expressed as ds = p(z)|dz|, where p is a
non-negative measurable function. In all situations we consider, p will be
continuous and positive everywhere except at a set of isolated points. A
conformal metric can be always pulled back via a topologically holomorphic
map. To a conformal metric corresponds an area element dρ = (i/2)p2(z)dz∧
dz̄ = p2(x + iy)dx ∧ dy. The simplest example is the spherical Riemannian
metric. This is what one usually uses to measure the distance between West
Lafayette, IN and Haifa, for example.

The type problem in this setting is to find out from the geometric informa-
tion about (1.1) whether R is conformally equivalent to C or to U (assuming
that R is open and simply connected). For example Picard’s theorem gives
the following necessary condition of parabolic type: if R is parabolic then it
covers all points of C̄ with at most two exceptions.

In [2] Ahlfors gives a sufficient condition for parabolic type. Assume that
π has the following property: every curve in C̄ has a lifting to R. This means
that the only singularities of the multiple valued analytic function π−1 are
algebraic branch points (critical points of π). We choose a point x0 ∈ R and
exhaust R with disks (with respect to the pullback of the spherical metric)
of radius r centered at x0. Let n(r) be the number of critical points of π in
the disk of radius r. If

∫ ∞ r dr

n(r)
= ∞(1.2)

then R is of parabolic type. If for example R = C and π is an elliptic function
then the pullback of the spherical metric differs from the Euclidean metric by
a factor bounded from above and below, so n(r)/r2 is bounded from above
and below and we see that condition (1.2) gives the right order of growth for
n(r).

In [3] Ahlfors goes further and considers arbitrary conformal Riemannian
metrics on R such that R is complete. Let L(r) be the length of the circum-
ference of the circle of radius r centered at z0 with respect to such a metric.
Then R has parabolic type if and only if there exists a metric of the described

type with the property
∫ ∞ dr

L(r)
= ∞.(1.3)

Here is the proof of (1.3) which demonstrates how the Length – Area principle
works. We may identify R with a disk in C, R = {z ∈ C : |z| < r0}, r0 ≤ ∞,
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and write the length element of a conformal metric as ds = p(z)|dz|. Let Γt

be the circumference of the disk of radius t, centered at 0 with respect to ds.
Then

2π ≤
∫

Γt

|d log z| =
∫

Γt

|d log z|
ds

ds,

and by the Schwarz inequality

4π2 ≤
∫

Γt

ds
∫

Γt

|d log z|2
ds2

ds = L(t)
∫

Γt

|d log z|2
ds2

ds.

So

4π2
∫ r′′

r′

dt

L(t)
≤
∫ r′′

r′
dt
∫

Γt

|d log z|2
ds2

ds.

The last double integral is the area swept by Γt as t varies from r′ to r′′,
measured with respect to the conformal metric |d log z| = |z|−1|dz|. If our
Riemann surface is hyperbolic, that is r0 < ∞, this area stays bounded as
r′′ → r0 and the integral (1.3) converges for every conformal metric ds. If
the surface is parabolic we just take ds = |dz|.

Of course (1.3) does not give any effective solution of the type problem,
but almost all known criteria of parabolic type, including (1.2), where the
spherical metric is used, can be obtained by a special choice of concrete
metric on R. Two sources about later developments in the type problem are
[58] and [61].

Assume now that the type of R is known, and let θ be a conformal map
of the disk or plane D = {z : |z| < r0}, r0 ≤ ∞ onto R. Then f = π ◦ θ
becomes a meromorphic function in D which is almost uniquely defined (up
to a conformal automorphism of D). One may be interested in how the
geometric properties of π are connected with the asymptotic behavior of
f . By asymptotic behavior of f we mean for example how the number of
solutions of equations f(z) = a in the disk {z : |z| ≤ r} behaves when r → r0.
This is the subject of the value distribution theory.

2. Value distribution theory

If f is a rational function its value distribution is controlled by its degree
d, which is the number of preimages of a generic point. The main tool of the
value distribution theory of meromorphic functions of R. Nevanlinna is the
characteristic function Tf (r) which replaces the degree in the case when f is
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transcendental. We explain the version of the Nevanlinna theory which was
found by Shimizu and Ahlfors independently of each other.

Let us denote by n(r, a) = nf (r, a) the number of solutions of the equation
f(z) = a in the disk {z : |z| ≤ r}, counting multiplicity. Here a ∈ C̄. By the
Argument Principle and the Cauchy–Riemann equations we have

n(r, a) − n(r,∞) =
1

2πi

∫

|z|=r

f ′

f − a
dz =

r

2π

d

dr

∫ π

−π
log |f(reiθ) − a| dθ.

We divide by r and integrate with respect to r, assuming for a moment that
f(0) 6= a,∞ and using the notation3

N(r, a) =
∫ r

0

n(t, a)

t
dt

to obtain

1

2π

∫ π

−π
log |f(reiθ) − a| dθ = log |f(0) − a| + N(r, a) − N(r,∞).(2.1)

This is the Jensen formula.
Let dρ = p2(u + iv)du ∧ dv be the area element of a conformal metric,

normalized such that the area of C̄ equals 1. We integrate (2.1) with respect
to a ∈ C̄ against dρ and obtain

1

2π

∫ π

−π
U(f(reiθ)) dθ = U(f(0)) +

∫

C̄

N(r, a) dρ(a) − N(r,∞),(2.2)

where
U(w) =

∫

C̄

log |w − a| dρ(a).(2.3)

If we choose dρ to be the normalized spherical area element that is

p(w) =
1√

π(1 + |w|2)
3If f(0) = a this has to be regularized in the following way:

N(r, a) =

∫

r

0

{n(t, a) − n(0, a)}t−1dt + n(0, a) log r.
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then changing the order of integration shows

T (r) :=
∫

C̄

N(r, a) dρ(a) =
∫ r

0

A(t) dt

t
,(2.4)

where

A(r) =
1

π

∫

|z|≤r

|f ′|2
(1 + |f |2)2

dm, where dm is the Euclidean area element in C.

The geometric interpretation of A(r) is the area of the disk |z| ≤ r with
respect to the pullback of the spherical metric, or in other words, the average

covering number of the Riemann sphere by the restriction of f to the disk
|z| ≤ r. The function T (r) defined in (2.4) is called the characteristic of
f . It is analogous to the degree of a rational function in the sense that it
measures the number of preimages of a generic point.4 If f is rational we
have Tf (r) = deg f · log r + O(1), and for transcendental f we always have
T (r)/ log r → ∞ as r → ∞.

Now if we use the spherical area element dρ in (2.3), the integrals can

be evaluated which gives U(w) = log
√

1 + |w|2 = log([w,∞])−1, where [, ]
stands for the chordal distance on the Riemann sphere. Thus the first term
in (2.2) is

m(r,∞) :=
1

2π

∫ π

−π
log

1

[f(reiθ),∞]
dθ.

and in general we can define

m(r, a) :=
1

2π

∫ π

−π
log

1

[f(reiθ), a]
dθ, a ∈ C̄.

This is called the proximity function5. It becomes large when f is close to
a in the average on the circle |z| = r. It is important that the proximity
function is non-negative. With these notations (2.2) can be rewritten as

N(r,∞) + m(r,∞) = T (r) + m(0,∞).

4In fact T (r) also has algebraic properties of degree: it is a logarithmic height in the field
of meromorphic function. The importance of this fact was fully recognized only recently
[57, 42, 28]

5Nevanlinna’s original definition of proximity function differs by an additive term which
is bounded when r → ∞.
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Now we notice that T (r) does not change if we replace f by L ◦ f where L is
a rotation of the sphere, which is a conformal automorphism which preserves
spherical distance. Thus we obtain

N(r, a) + m(r, a) = T (r) + m(0, a) = T (r) + O(1), r → ∞, a ∈ C̄.(2.5)

This is the First Main Theorem (FMT) of Nevanlinna in the form of Shimizu–
Ahlfors. It implies by the way that

N(r, a) ≤ T (r) + O(1), r → ∞, for every a ∈ C̄,(2.6)

because the proximity function is non-negative. When compared with (2.4)
this shows that the points a for which N(r, a) is substantially less then T (r)
should be exceptional. This was put in a very precise form by Ahlfors and
Nevanlinna [47], who extended the earlier results by Valiron and Littlewood.
We state only one theorem of this sort:

(2.7)For every ǫ > 0 we have m(r, a) = O(T (r))1/2+ǫ for all a ∈ C̄\E, where

E is a set of zero logarithmic capacity.

The description of the exceptional set in this theorem cannot be substantially
improved without making any additional assumptions about f . Very subtle
examples constructed by Hayman [37] show that

(2.8)Given an Fσ set E ⊂ C̄ of zero logarithmic capacity there exists a

meromorphic function f and a sequence rk → ∞ such that mf(rk, a) ∼ Tf (rk)
for all a ∈ E.

On the other hand, a lot of work has been done to improve the exceptional
set for various subclasses of meromorphic functions (see [23] for a survey of
these results).

The functions Tf (r), Nf (r, a) and mf (r, a) provide a convenient way to
describe the asymptotic behavior of f . The characteristic T (r) measures the
growth of the number of solutions of f(z) = a in the disks |z| ≤ r. The
First Main Theorem shows that T (r) provides upper bound for this number
for all a ∈ C̄ and (2.4) or (2.7) show that for typical a this upper bound is
attained. It is natural to define the order of a meromorphic function f by

λ = lim sup
r→∞

log T (r)

log r
.

8



3. Simply connected parabolic Riemann surfaces.

There are few known sufficient conditions for parabolic type. The one
mentioned in Section 1 requires that all paths can be lifted via π so it cannot
be applied to Riemann surfaces (1.1) with “singularities”. Let us define this
notion precisely.

Let D(a, r) ⊂ C̄ be the disk with respect to the spherical metric of radius
r centered at a ∈ C̄. We fix a ∈ C̄ and consider a function σ which to
every r > 0 puts into correspondence a component σ(r) of the preimage
π−1(D(a, r)) in such a way that r1 > r2 implies σ(r1) ⊂ σ(r2). Now there
are two possibilities:
a) ∩r>0σ(r) = {one point} ⊂ R or
b) ∩r>0σ(r) = ∅.
In the case b) we say that σ defines a (transcendental) singular point over
a of the Riemann surface (R, π). Thus all possible σ’s are in one to one
correspondence with all “points”, ordinary and singular.

A singular point σ over a is called logarithmic if for some r > 0 the
restriction π|σ(r) is a universal covering over D(a, r)\{a}.

The following classification belongs to Iversen: a singular point σ over a
is called direct if there exists r > 0 such that π omits the value a in σ(r). If
such r does not exist, σ is called indirect. So logarithmic singular points are
direct.
Examples. Let R = C. If π = exp there are two singular points: one over
0 and one over ∞. Both are direct (logarithmic). If π(z) = sin z/z there
are two indirect singular points over 0 and two direct (logarithmic) singular
points over infinity. If φ(z) = z sin z then there is one direct singular point
over infinity, which is not logarithmic.

Nevanlinna [48] proved that an open simply connected Riemann surface
having no critical points and finitely many singular points is of parabolic
type. This was extended by Elfving [26] to allow finitely many critical points.
In fact they obtained much more precise information about meromorphic
functions associated with these surfaces:

(3.1) Theorem. Let π : R → C̄ be a simply connected Riemann surface,

θ a conformal mapping of the disk |z| < r0 ≤ ∞ onto R, and f = π ◦ θ.
Assume that π has only finitely many critical points and that (R, π) has a
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finite number p ≥ 2 of singular points. Let d(a) be the number of singular

points over a. Then:

(i) (R, π) is of parabolic type, so that r0 = ∞;

(ii) Tf (r) ∼ crp/2, r → ∞, where c > 0 is a constant, and

(iii) Nf (r, a) ∼ (2cd(a)/p)rp/2, r → ∞, a ∈ C̄.

The simplest example of the situation described by this theorem is p = 2
and no critical points, then f is an exponential. If p = 3 and there are
no critical points, f can be expressed in terms of the Airy functions which
satisfy the differential equation y′′ + zy = 0. Nevanlinna’s proof is based
on asymptotic integration of certain linear differential equations with poly-
nomial coefficients, which makes it impossible to extend the method to any
substantially wider class of Riemann surfaces (at least nobody has ever suc-
ceeded in this). In the same journal issue where Nevanlinna’s theorem (3.1)
appeared, Ahlfors’ paper [5] was published, which gave a completely differ-
ent approach to the problem. It is Ahlfors’ approach which was the base of
all subsequent generalizations. Roughly speaking, the argument goes in the
following way. One dissects R in (1.1) into pieces such that for each piece
an explicit conformal map of a plane domain onto this piece can be found.
Then one pastes these pieces together and obtains a homeomorphism of C

onto R. The point is to perform this construction in such a way that the
explicitly constructed homeomorphism θ1 : C → R is as close to conformal as
possible. If one finds a quasiconformal homeomorphism θ1 this implies that
R has parabolic type. One can go further and find θ1 close to a conformal θ
in the following sense:

θ = θ1 ◦ φ, where φ(z) ∼ cz, z → ∞.

Then one can derive the approximate formulas for N(r, a) if θ1 is described
explicitly. (Ahlfors’ argument was in fact more complicated, but this is what
was eventually distilled from his paper). The distortion theorem used to show
that θ is close to θ1 is called the Teichmüller–Wittich–Belinskii Theorem: if

φ is a quasiconformal homeomorphism of the plane and

∫

|z|≥1
k(z)

dm

|z|2 < ∞, where k(z) = |φz̄/φz|

then φ is conformal at infinity, that is the limit limz→∞ φ(z)/z 6= 0 exists.
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Using the described approach more and more general classes of open sim-
ply connected Riemann surfaces were subsequently introduced, their type
determined, and the value distribution of corresponding meromorphic func-
tions studied. We mention the work of Künzi, Wittich, Schubart, Pöschl,
Ullrich, Le Van Thiem, Huckemann, Hällström, and Goldberg. Most of the
results are described in the books of Wittich [61] and Goldberg-Ostrovskii
[33] and in Goldberg’s paper [31]. For further development see [24] – the only
paper on the subject written in English.

Let us assume now that (R, π) is a Riemann surface of parabolic type and
see how the topological properties of π influence the asymptotic behavior of
the meromorphic function f . The most famous result in this direction is the
Denjoy–Carleman–Ahlfors Theorem [4].

(3.2) Theorem. If a simply connected parabolic Riemann surface has p ≥ 2
direct singular points, then the corresponding meromorphic function satisfies

lim inf
r→∞

r−p/2T (r) > 0.

Thus the number of direct singularities is at most max{1, 2λ}, where λ is the

order of the meromorphic function.

The story of this theorem is explained in detail in M. Sodin’s talk [51]. We
add only few remarks. Heins [38] proved that

(3.3) the set of projections of direct singular points of a parabolic Riemann

surface is at most countable.

On the other hand, simple examples show that the set of direct singular points
itself may have the power of the continuum. One cannot say anything about
the size of the set of projections of all singular points, even if the growth of
Tf is restricted: for every λ ≥ 0 there exist meromorphic functions of order
λ such that every point in C̄ has a singular point over it [27]. Goldberg
[32] generalized Ahlfors’ theorem by including a certain subclass of indirect
singular points, which are called K-points. The property of being a K-point
depends only on the restriction of π to σ(r) with arbitrarily small r > 0,
but only for some narrow classes of Riemann surfaces is it known how to
determine effectively whether a singular point is a K-point.

4. The Second Main Theorem of the value distribution theory
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To formulate the main result of the value distribution theory we denote
by n1(r) = n1,f (r) the number of critical points of meromorphic function f
in the disk |z| ≤ r, counting multiplicity. It is easy to check that

n1,f (r) = nf ′(r, 0) + 2nf(r,∞) − nf ′(r,∞).(4.1)

Now we apply the averaging as above:

N1(r) = N1,f (r) :=
∫ r

0

n1(t) dt

t
.

If 0 is a critical point, the same regularization as before has to be made. The
Second Main Theorem (SMT) says that for every finite set {a1, . . . , aq} ⊂ C̄

we have
q
∑

j=1

m(r, aj) + N1(r) ≤ 2T (r) + S(r),(4.2)

where S(r) = Sf (r) is a small “error term”, Sf (r) = o(T (r)) when r →
∞, r /∈ E, where E ⊂ [0,∞) is a set of finite measure6. The SMT may be
regarded as a very precise way of saying that the term m(r, a) in the FMT
(2.5) is relatively small for most a ∈ C̄. It is instructive to rewrite (4.2) using
(2.5) in the following form. Let N̄(r, a) be the averaged counting function of
different solutions of f(z) = a, that is this time we don’t count multiplicity.
Then

∑

j N(r, aj) ≤
∑

j N̄(r, aj) + N1(r) and we obtain

q
∑

j=1

N̄(r, aj) ≥ (q − 2)T (r) + S(r).(4.3)

Now Picard’s theorem is an immediate consequence: if three values a1, a2 and
a3 are omitted by a meromorphic function f , then Nf (r, aj) ≡ 0, 1 ≤ j ≤ 3,
so the left side of (4.3) is zero and we obtain Tf (r) = Sf (r), which implies
that f is constant. Here is a more refined

(4.4)Corollary from the SMT. Let a1, . . . , a5 be five points on the Riemann

sphere. Then at least one of the equations f(z) = aj has simple solutions.

6In fact S(r) has much better estimate. Recently there was a substantial activity in the
study of the best possible estimate of this error term, see for example [39]. On the other
hand Hayman’s examples (2.8) show that in general the error term may not be o(T (r))
for all r, so an exceptional set E is really required.
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Indeed, if all five equations have only multiple solutions then N1(r, f) ≥
(1/2)

∑5
j=1 N(r, aj). When we combine this inequality with SMT (4.2) it im-

plies (5/2)T (r) ≤ 2T (r) + S(r), so f = const.
For most “reasonable” functions, like Nevanlinna’s functions described

in Theorem (3.1), the SMT tends to be an asymptotic equality rather then
inequality; the most general class of functions for which this is known consists
of meromorphic functions whose critical and singular points lie over a finite
set. This is due to Teichmüller; see, for example [61, Ch. 4]).

The purpose of Ahlfors’ paper [8], as he explains in the commentary, “was
to derive the main results of Nevanlinna theory of value distribution in the
simplest way I knew how.” The proof presented in [8] was the source of most
generalizations of Nevanlinna theory to higher dimensions. We will return to
these generalizations in Section 8 and now Ahlfors’ proof will be presented.
A reader not interested in proofs may skip to the end of this section.

Ahlfors’ proof of SMT. Let dω be the spherical area element, so that

dω =
dudv

π(1 + |w|2)2
, w = u + iv.

We consider another area element on the Riemann sphere, dρ = p2dω,
where p is given by

log p(w) :=
q
∑

j=1

log
1

[w, aj ]
− 2 log





q
∑

j=1

log
1

[w, aj ]



+ C,(4.5)

where [, ] is the chordal distance, and C > 0 is chosen so that

∫

C̄

dρ = 1.

(The sole purpose of the second term in the definition of p in (4.5) is to make
this integral converge, without altering much the behavior near aj which is
determined by the first term).

We pull back this dρ via f and write the change of the variable formula:

∫

C̄

n(r, a)dρ(a) =
∫ r

0

∫ π

−π
p2(w)

|w′|2
(1 + |w|2)2

t dθdt, w = f(teiθ).(4.6)
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Now we consider the derivative of the last double integral with respect to r,
divided by 2πr:

λ(r) :=
1

2π

∫ π

−π

|w′|2
(1 + |w|2)2

p2(w) dθ, w = f(reiθ).

Using the integral form of the arithmetic-geometric means inequality7 we
obtain

log λ(r) ≥ 1

π

∫

log p(w) dθ − 1

π

∫

log(1 + |w|2)dθ +
1

π

∫

log |w′| dθ.(4.7)

The first integral in the right-hand side of (4.7) is approximately evaluated
using (4.5) (the second summand in (4.5) becomes irrelevant because of an-
other log); the second integral equals 4m(r,∞) and the third one is evaluated
using Jensen’s formula (2.1):

(2 + o(1))
q
∑

j=1

m(r, aj) + 2 {N(r, 0, f ′) − N(r,∞, f ′) − 2m(r,∞)} ≤ log λ(r)

The expression inside the brackets is equal to N1(r) − 2T (r) (by definition
of N1 and the FMT (2.5) applied with a = ∞), so

q
∑

j=1

m(r, aj) + N1(r) − (2 + o(1))T (r) ≤ 1

2
log λ(r).(4.8)

To estimate λ we return to the left side of (4.6). Integrating twice and using
the FMT we obtain

∫ r
0

dt
t

∫ t
0 λ(s)sds =

∫

C̄
N(r, a) dρ(a) ≤ T (r) + O(1). Now

the argument is concluded with the following elementary calculus lemma:

If g is an increasing function on [0,∞), tending to infinity, then g′(x) ≤
g1+ǫ(x) for all x /∈ E, where E is a set of finite measure.

Applying this lemma twice we conclude that log λ(r) = S(r) which proves
the theorem.

5. Ahlfors’ Überlagerungsflächentheorie

7 1

b−a

∫

b

a
log g(x) dx ≤ log

{

1

b−a

∫

b

a
g(x) dx

}
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In a series of papers written in 1932-33 Ahlfors developed a different
approach to value distribution theory, which is based on a generalization of
the Riemann–Hurwitz formula.

To explain his motivation we return to the type problem. As was ex-
plained in Section 1, Picard’s theorem may be considered as a necessary
condition of parabolic type. But this condition is very unstable: a small
perturbation of (R, π) destroys the property that a value is omitted. The
same can be said about (4.4) which may also be regarded as a necessary
condition for parabolic type. This instability was noticed by A. Bloch [15],
who stated the following general Continuity Principle, which I prefer to cite
from Ahlfors’ survey [6] une proposition de nature qualitative, exacte avec

un certain énoncé, demeure encore exacte si l’on modifie les données de la

proposition, en leur faisant subir une déformation continue. In accordance
with this principle Bloch conjectured among other things the following:

(5.1) Let D1, . . . , D5 be five Jordan domains with disjoint closures, and f be

a non-constant meromorphic function in C. Then there is a bounded simply

connected domain D ⊂ C which is mapped by f homeomorphically onto one

of the domains Dj.

This conjecture improves (4.4) in accordance with the Continuity Principle.
A similar improvement of Picard’s theorem would be that

Given three disjoint domains and a non-constant meromorphic function f ,

there is at least one bounded component of the f-preimage of one of these

domains.

In [8] Ahlfors proved all these conjectures. His technically hard proof was
a combination of topological considerations with sophisticated distortion the-
orems. Finally he developed a general theory [9] which probably constitutes
his most original contribution to the study of meromorphic functions. The
theory has a metric-topological nature; all complex analysis in it is reduced
to one simple application of the Length – Area Principle. This makes the
theory flexible enough to treat quasiconformal mappings because for such
mappings the Length – Area argument also works. In fact the word “quasi-
conformal” was for the first time used in this paper. In his commentary in
[1] to [9] Ahlfors writes:
“I included this more general situation in my paper but with pangs of con-
science because I considered it rather cheap padding... Little did I know at
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that time what an important role quasiconformal mappings would come to
play in my own work”.

We start with several definitions and elementary facts from the topology
of surfaces. A bordered surface of finite type is a closed region on a compact
orientable surface bounded by finitely many simple closed curves. (Compact
orientable surfaces are spheres with finitely many handles attached). The
Euler characteristic of a bordered surface χ is8 2g − 2 + k, where g is the
number of handles (genus) and k is the number of holes (boundary curves).
We consider a topologically holomorphic map of two bordered surfaces of
finite type, π : R → R0. If π(∂R) ⊂ ∂R0 then π is a ramified covering. In
this case we have
(i) there is a number d, called the degree of π such that every point in R0

has d preimages, counting multiplicity;
(ii) χ(R) ≥ dχ(R0).
In fact a more precise relation holds, χ(R) = dχ(R0)+ i(π), where i(π) is the
number of critical points of π, counting multiplicity. This is the Riemann–
Hurwitz formula.

Ahlfors’ theory extends these two facts to the case when π is almost

a ramified covering, that is the part of the boundary ∂0R ⊂ ∂R which is
mapped to the interior of R0 is relatively small in the sense we are going to
define now. This part ∂0R is called the relative boundary.

Let R0 be a region in a compact surface equipped with a Riemannian
metric. A curve is called regular if it is piecewise smooth. A region is called
regular if it is bounded by finitely many piecewise smooth curves.9 We assume
that R0 is a regular region. The restriction of the Riemannian metric to R0

is called ρ0 and its pullback to R is called ρ.
Let L be the length of the relative boundary ∂0R. Everything on R is

measured using the pulled back metric ρ. We use the symbol |.| for the area
of a regular region or for the length of a regular curve, depending on context.
We define the average number of sheets of π by S := |R|/|R0|. Similarly, if
X0 ⊂ R0 is a regular region or curve, we define the average number of sheets
over X0 as S(X0) = |X|/|X0|, where X = π−1(X0).

The following results are the First and Second Main Theorems of Ahlfors’

8We follow Ahlfors’ notations. In modern literature the Euler characteristic is usually
defined with the opposite sign.

9Ahlfors defines the precise degree of regularity for which his theory works. Here we
make stronger smoothness assumptions only for simplicity.
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theory.

(5.2) For every regular region or curve X0 ⊂ R0 there exists a constant k
depending only of R0 and X0 such that

|S(X0) − S| < kL.

(5.3) There exists a constant k depending only of R0 such that

max{χ(R), 0} ≥ Sχ(R0) − kL.

It is important in these theorems that k does not depend on R and π.
They contain useful information if L is much smaller then S, when they imply
that properties (i) and (ii) above hold approximately.

The proofs of (5.2) and especially (5.3) are rather sophisticated10, though
elementary. The proof of (5.3) was later simplified by Y. Toki [54]. There is
another recent simplified proof by de Thelin [53].

Now we explain how this applies to open Riemann surfaces and mero-
morphic functions. Let us consider a meromorphic function

f : R → C̄,

where R is the plane C equipped with the pullback of the spherical metric
ρ0 on C̄. One can consider any compact Riemann surface with any Rieman-
nian metric instead of C̄. A surface with a Riemannian metric R is called
regularly exhaustible if there exists an increasing sequence of compact regular
subregions F1 ⊂ F2 ⊂ . . . , ∪Fj = R with the property |∂Fj|/|Fj | → 0 as
j → ∞. It is easy to prove using the Length – Area Principle that C is
always regularly exhaustible, no matter what the conformal metric is, and
a sequence of concentric Euclidean disks can be always taken as Fj . Thus
one can apply (5.2) and (5.3) to the restrictions of a meromorphic function
f on the disks |z| ≤ r. Then the average number of sheets S = Af (r) is
the same A(r) as in (2.4). We denote the length of the relative boundary
by L(r), this is nothing but spherical length of the f -image of the circle
|z| = r. The Euler characteristic of the sphere is negative, χ(C̄) = −2, so
(5.3) gives nothing. To extract useful information from (5.3) we consider a
region R0 ⊂ C̄ obtained by removing from C̄ a collection of q ≥ 3 disjoint

10Ahlfors won one of the first two Fields Medals for this in 1936
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spherical disks Dj, so that χ(R0) = q − 2. Now we apply (5.3) to the re-
striction of f on R(r) := f−1(R0) ∩ {z : |z| ≤ r}. The Euler characteristic
of this region is the number of boundary curves minus two. A component of
f−1(Dj)∩{z : |z| ≤ r} is called an island if it is relatively compact in |z| < r,
and all other components are called peninsulae. If n̄(r,Dj) is the number of
islands over Dj, then χ(R(r)) =

∑

j n̄(r,Dj) − 1. Thus from (5.2) and (5.3)
we obtain

q
∑

j=1

n̄(r,Dj) ≥ (q − 2)A(r) + o(A(r))(5.4)

for those r for which L(r)/A(r) → 0. This result is called the Scheibensatz.
It has to be compared with the SMT of Nevanlinna in the form (4.3). First
of all, (5.4) can be integrated with respect to r to obtain

q
∑

j=1

N̄(r,Dj) ≥ (q − 2)T (r) + o(T (r))(5.5)

with a somewhat worse exceptional set for r than in (4.3) [43], [29]. Now if aj

lie in the interiors of Dj for j = 1, . . . , q then evidently N̄(r, aj) ≥ N̄(r,Dj)
because the restriction of f on an island is a ramified covering over Dj. Thus
(5.5) is better than (4.3) because (5.5) does not count a-points in peninsulae.

The Five Islands Theorem (5.1) follows from (5.4) in the same way as
(4.4) follows from (4.3).

A substantial complement to this theory was made by Dufresnoy [25],
who invented the way of deriving normality criteria from Ahlfors’ theory
using a simple argument based on an isoperimetric inequality (see also [36]
for a very clear and self-contained exposition of the whole theory and its
applications). The normality criteria we are talking about are expressions of
another heuristic principle11 sometimes associated with the name of Bloch
(based on his paper [15])

(5.6) that every condition which implies that a function meromorphic in C

is constant, when applied to a family of functions in a disk, should imply that

this family is normal, preferably with explicit estimates.

For example:

11several rigorous results which may be considered as implementations of this principle
are known: [63, 42]
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Given five regular Jordan regions with disjoint closures, consider the class

of meromorphic functions in a disk which have no simple islands over these

regions. Then this class is a normal family.

In fact this result was obtained by Ahlfors himself in [7] but Dufresnoy’s
method permits an automatic derivation of many similar results from Ahlfors’
metric-topological theory.

Another situation when (5.3) applies is the following. Let D ⊂ C be a
domain, f : D → D0 a meromorphic function in D̄\{∞}, and D0 ⊂ C̄ a
Jordan domain. Assume that f maps ∂D ∩ C to ∂D0, Then D equipped
with the pullback of the spherical metric is regularly exhaustible; one can
take an exhaustion by D ∩ {z : |z| ≤ r}. It follows from Ahlfors’ theory that
f can omit at most two values from D0 [55, Theorem VI.9]. This is how
the result about countability of the set of direct singularities for a parabolic
surface (3.3) can be proved. The situation when D = D0 (and they are not
necessarily Jordan) occurs frequently in holomorphic dynamics, namely in
the iteration theory of meromorphic functions; see, for example [14], where
D is a periodic component of the set of normality of a meromorphic function.
In this case it follows from Ahlfors’ theory that the Euler characteristic of D
is non-positive [17]

Here is another variation on the same topic, due to Noshiro and Kunugui,
see for example [55]:

let f be a meromorphic function in the unit disk U such that limz→ζ f(z)
exists and belongs to the unit circle ∂U for all ζ ∈ ∂U\E, where E is a closed

set of zero logarithmic capacity, |f(0)| < 1. Then f(z) = a has solutions

z ∈ U for all a ∈ U with at most two exceptions. If f is holomorphic then

the number of exceptional values is at most one.

In [10] Ahlfors made, using his own expression, his third attempt to pen-
etrate the reasons behind Nevanlinna’s value distribution theory. This time
he bases his investigation on the Gauss – Bonnet formula, which is

∫ ∫

R
K dρ = −2πχ −

∫

∂R
gds.

Here R is a bordered surface with a smooth Riemannian metric ds with
associated area element dρ, K is the Gaussian curvature, χ is the Euler
characteristic and g is the geodesic curvature. Choosing a metric with finitely
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many singularities of the type (4.5) and pulling it back from R0 to R via π,
one can obtain the relation between Euler characteristics of R0 and R. The
only analytical problem is to estimate the integrals along the boundary curves
in the Gauss–Bonnet formula. This general method permits one to give a
unified proof of both (5.4) and the usual SMT (4.3). This paper [10] was the
basis of many generalizations of value distribution theory.

6. Bloch constant and Ahlfors’ extension of Schwarz lemma

In 1921 Valiron proved another necessary condition of parabolic type.

Let

π : R → C

be a parabolic Riemann surface. Let ds be the the pullback of the Euclidean

metric from C to R. Then there are disks of arbitrarily large radii in R with

respect to ds such that the restriction of π to these disks is one-to-one.

This can be easily derived from the Five Islands theorem (5.1). Much better
known is the statement which corresponds to this via Bloch’s Principle (5.6).

Bloch’s Theorem. Let f be a holomorphic function in the unit disk U

satisfying |f ′(0)| = 1. Then there is a relatively compact region D ⊂ U

which is mapped by f univalently onto a disk of radius B, where B is an

absolute constant.

The largest value of B for which this theorem is true is called Bloch’s con-
stant. Its precise value is unknown to this day. A very plausible candidate
for the extremal Riemann surface can be described as follows. Consider the
tiling of the plane with equilateral triangles, such that 0 is the center of one
of the triangles. Denote the set of all vertices by X. There is unique sim-
ply connected Riemann surface R which has no singular points over C and
all points over X are simple critical points. This R is of hyperbolic type
by Valiron’s theorem. Let f be the corresponding function in the unit disk
(normalized as in Bloch’s theorem). In [11] the authors make the calculation
for this function and find that

B ≤ B′ :=
√

π · 21/4
Γ
(

1
3

)

Γ
(

1
4

)





Γ
(

11
12

)

Γ
(

1
12

)





1/2

= 0.4719 . . . .
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This B′ is conjectured to be the correct value of Bloch’s constant B.
In [12] Ahlfors gives the lower estimate B ≥

√
3/4 > 0.433, but much

more important is the method which Ahlfors used to obtain this result.
Let ds = p(z)|dz| be a conformal metric. Its Gaussian curvature is ex-

pressed by −p−2∆ log p. This is invariant under conformal mappings. We
denote by dσ the Poincaré metric in the unit disk,

|dσ| = 2
|dz|

1 − |z|2 ,

whose Gaussian curvature is identically equal to −1. The usual conformal
invariant form of the Schwarz lemma says that every holomorphic map of the
unit disk into itself is contracting with respect to Poincaré metric. We call
ds′ = p′|dz| a supporting metric of ds = p|dz| at the point z0 if p′(z0) = p(z0)
and p′(z) ≤ p(z) in a neighborhood of z0.

Theorem. Suppose that p is continuous in the unit disk and it is possible to

find a supporting metric of curvature ≤ −1 at every point. Then ds ≤ dσ.

The usual Schwarz lemma follows if we take the pullback of dσ as ds.
This extended form of the Schwarz lemma is frequently used now in differ-
ential geometry and geometric function theory. See [19] for a survey of these
applications.

Returning to Bloch’s constant, the best known lower estimate is B >√
3/4 + 2 × 10−4 which is due to Chen and Gauthier [21].

7. Holomorphic curves

From the algebraic point of view the Riemann sphere C̄ is the com-
plex projective line P1. Value distribution theory can be extended to holo-
morphic mappings from C to complex projective space Pn. Let us recall
the definition. In Cn+1\{0} we consider the following equivalence relation:
(z0, . . . , zn) ∼ (z′

0, . . . , z
′
n) if there is a constant λ ∈ C\{0} such that

z′
j = λzj. The set of equivalence classes with the natural complex analytic

structure is n-dimensional complex projective space Pn. Let π : Cn+1 → Pn

be the projection. Coordinates of a π-preimage of a point w ∈ Pn in Cn+1 are
called the homogeneous coordinates of w. A holomorphic map f : C → Pn

is called a holomorphic curve. It can be lifted to a map F : C → Cn+1

such that f = π ◦ F . This F = (F0, . . . , Fn) is called a homogeneous rep-
resentation. Here the Fj are entire functions without common zeros. For
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n = 1 this is just a representation of a meromorphic function as a quotient
of two entire ones. A generic point in Pn has no preimages under f so one
studies preimages of hypersurfaces, in particular, preimages of hyperplanes.
An analog of Nevanlinna’s theory for this case was created by H. Cartan [20],
and the role of the spherical metric is now played by a Hermitian positive
(1, 1)-form, the so-called Fubini-Study form. The pullback of this form via a
holomorphic curve f is

dρ = ‖F‖−4
∑

i>j

|FiF
′
j − F ′

iFj|2 dm,

where ‖.‖ is the usual Euclidean norm in Cn+1 and dm is the area element
in C. The Nevanlinna-Cartan characteristic of f is defined by

Tf (r) =
∫ t

0

Af (t)

t
dt, where A(r) =

∫

|z|≤r
dρ.

A hyperplane A ⊂ Pn is given by a linear equation in homogeneous coordi-
nates: a0z0 + . . .+anzn = 0, so the preimages of this hyperplane under f are
just zeros of the linear combination gA = a0F0 + . . . + anFn. The number of
these zeros in the disk |z| ≤ r is denoted by n(r, A) and the averaged count-
ing functions N(r, A) are defined as before. The proximity functions m(r, A)
can be also defined by analogy with the one-dimensional case, the role of the
chordal distance now being played by the sine of the angle between a line
and a hyperplane:

m(r, A) =
1

2π

∫ π

−π
log

‖F‖ · ‖A‖
|gA|

dθ.

The First Main Theorem of Cartan says that

m(r, A) + N(r, A) = T (r) + O(1) for every hyperplane A,(7.1)

where we assume only that f(C) is not contained in A. In the Second
Main Theorem of Cartan we assume that several hyperplanes A1, . . . , Aq

are in general position that is every n + 1 of them have empty intersection.
We also denote by N∗(r) the averaged counting function of zeros of the
Wronskian determinant W (F0, . . . , Fn); these zeros do not depend on the
choice of homogeneous representation F . To guarantee that this Wronskian is
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not identical zero we need to assume that our curve is linearly non-degenerate

that is f(C) is not contained in any hyperplane, which is the same as to say
that F0, . . . , Fn are linearly independent. The SMT of Cartan is

q
∑

j=1

m(r, Aj) + N∗(r) ≤ (n + 1)T (r) + S(r),(7.2)

where the error term S(r) has the same estimate as in one-dimensional Nevan-
linna theory.

One important corollary is the Borel theorem: a curve omitting n + 2
hyperplanes in general position has to be linearly degenerate. This is not a
“genuine” Picard-type theorem, because the conclusion is “linearly degener-
ate” rather than “constant”. But one can deduce from Borel’s theorem the
following: a curve omitting 2n + 1 hyperplanes in general position has to be

constant. This corollary from Borel’s theorem was apparently formulated for
the first time by P. Montel [44].

It is strange that Cartan’s paper [20] was overlooked by many researchers
for about 40 years. Even as late as in 1975 some specialists in holomorphic
curves were surprised to hear about Cartan’s work.

Meanwhile H. Weyl and his son J. Weyl in 1938 restarted the subject
of value distribution of holomorphic curves from the very beginning [59],
independently of Cartan. They failed to come to conclusive results like Car-
tan’s second main theorem, but they contributed two important ideas to the
subject. The first of them was to consider the so-called associated curves.
Here we need some definitions. A set of k + 1 linearly independent vectors
A0, . . . , Ak ∈ Cn+1 defines a k + 1-dimensional linear subspace. It is conve-
nient to use the wedge product A0 ∧ . . .∧Ak to describe this subspace. Two
(k + 1)-tuples define the same subspace if and only if their wedge products
are proportional. The elements of ∧k+1Cn+1 are called polyvectors; those
of them which have the form A0 ∧ . . . ∧ Ak, where Aj ∈ Cn+1 are called
decomposable polyvectors. If we fix a basis in Cn+1 this defines a basis in
∧k+1Cn+1. Thus to each k + 1-subspace corresponds a point in PNk , where

Nk =

(

n + 1
k + 1

)

− 1, the homogeneous coordinates of this point being co-

ordinates of A0 ∧ . . . ∧ Ak in the fixed basis of ∧k+1Cn+1. The coordinates
we just introduced are called the Plücker coordinates. A linear subspace of
dimension k + 1 in Cn+1 projects into a projective subspace of dimension k.
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The set of all such projective subspaces identify G(k, n) with a manifold in
PNk of dimension (k + 1)(n − k). An explicit system of equations defining
this manifold can be written (see for example [40, 34]).

To every holomorphic curve f in Pn, the Weyls associate curves fk :
C → G(n, k) which in homogeneous coordinates have the representation
F ∧F (1)∧F (2)∧ . . .∧F (k), k = 0, . . . , n−1; where F (j) is the j-th derivative.
The geometric interpretation is that they assign to each point f(z) on the
curve the tangent line f1(z) and the osculating k-planes fk(z). For each k,
fk(z) is the unique k-dimensional projective subspace which has a contact of
order at least k with the curve at the point f(z).

The second important idea of the Weyls was to consider the proximity
functions of a curve f with respect to projective subspaces of any codimen-
sion, not only with respect to hyperplanes. Such a proximity function may
be obtained by averaging the hyperplane proximity functions over all hyper-
planes containing the given subspace. The FMT (7.1) no longer holds for
k-subspaces with k < n− 1 because they normally have no preimages at all.
But the SMT interpreted as an upper bound for proximity functions still has
a sense. The Weyls [59] managed to prove such SMT for points, which are
0-subspaces.

It was Ahlfors who proved in [13] the precise estimates for proximity
functions for all fk in all codimensions. To formulate the result we use the
following notation. Let Ah be a decomposable h-polyvector. Then

mk(r, A
h) =

1

2π

∫ π

−π
log

‖Fk‖ · ‖Ah‖
‖Fk ∨ Ah‖ dθ.

The expression in the logarithm is reciprocal to the distance between the
polyvector Fk and the subspace orthogonal to Ah. It is expressed in terms
of the inner product ∨ of polyvectors, which coincides with the usual dot
product when h = k. The number of critical points of the map fk : C →
G(n, k) is denoted by n∗

k(r) and the corresponding averaged counting function
by N∗

k (r). We also set Tk = Tfk
. Now we assume that f is a linearly non-

degenerate curve and a finite system of decomposable polyvectors in general
position is given in each dimension h. Ahlfors’ result is the following (we use
the formulation from [62]).
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For 0 ≤ h ≤ k

∑

Ah

mk(A
h) ≤

(

n + 1
h + 1

)

Tk −
n−1
∑

m=k

h
∑

i=0

ph(m − i, h − i)N∗
m−i−

−
k
∑

i=k−h−1

(

i
h − k + i + 1

)(

n − i − 1
k − i

)

Ti + S(r),

and for k ≤ h ≤ n − 1

∑

Ah

mk(A
h) ≤

(

n + 1
h + 1

)

Tk−
k
∑

m=0

n−k−1
∑

i=0

pn−h−1(n−m−i−1,m−h−i−1)N∗
m+i−

−
n−h+k
∑

i=k

(

n − 1 − i
h − k − 1

)(

i
k

)

Ti + S(r),

where the following notation is used

ph(k, l) =

(

n + 1
h + 1

)

−
∑

j≥0

(

k + 1
k + j + 1

)(

n − k
h − l − j

)

≥ 0.

Here the binomial coefficient is defined for all integers by (1+x)n =
∑

k

(

n
k

)

xk.

In particular for h = k, when the First Main Theorem applies we have

∑

Ak

mk(A
k) ≤

(

n + 1
k + 1

)

Tk −
k
∑

m=0

n+m−k−1
∑

i=m

pk(i,m)N∗
i + S(r).(7.3)

From this one can derive

∑

Ak

mk(A
k) ≤

(

n + 1
k + 1

)

Tk(7.4)

This has the same form as Cartan’s SMT (7.2) would give if one applies it
to the associated curves fk and drops the N∗ term. But (7.4) does not follow
from Cartan’s SMT. The catch is that even if f is linearly non-degenerate, the
associated curves fk might be linearly degenerate. One can also show (see,
for example [30, p. 138]) that the ramification term N∗ in Cartan’s SMT can
be obtained from (7.3). Thus Ahlfors’ result is stronger then Cartan’s SMT
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when applied to the associated curves fk, and decomposable hyperplanes,
and they coincide when applied to the curve f itself and hyperplanes.

The difficulties Ahlfors had to overcome in this paper are enormous. The
main idea can be traced back to his proofs of Nevanlinna’s SMT, but mul-
tidimensionality causes really hard problems. As Cowen and Griffiths say
in [22] “The Ahlfors theorem strikes us as one of the few instances where
higher codimension has been dealt with globally in complex-analytic geom-
etry”. Ahlfors in his commentaries [1, p. 363] says: “In my own eyes the
paper was one of my best, and I was disappointed that years went by without
signs that it had caught on”.

Since he wrote this the situation has changed a little. H. Wu [62] pub-
lished a detailed and self-contained exposition of Ahlfors’ work. Two new
simplified versions of the proof of (7.3) were given in [22] and [30]; the second
work gives important applications to minimal surfaces in Rn. Still, from my
point of view much in this work of Ahlfors remains unexplored. For example,
let f be a holomorphic curve in P2 and a1, . . . , aq a collection of points in
P2. What is the smallest constant K such that

q
∑

j=1

mf(r, aj) ≤ KTf (r) + S(r)(7.5)

holds? Ahlfors’ relations will give this with K = 3/2; the same can be
deduced from (7.2). But one can conjecture that in fact K = 1. A related
question was asked by Shiffman in [50]; no progress has been made.

8. Multi-dimensional counterpart of the type problem.

Here we will mention very briefly some later research in the spirit of the
type problem where Ahlfors’ ideas play an important role.

Quasiregular mappings of Riemannian manifolds. A mapping f between
two n-dimensional Riemannian manifolds is called K-quasiregular if it be-
longs to the Sobolev class W 1

n,loc and its derivative almost everywhere satisfies
|df |n ≤ KJf , where Jf is the Jacobian. Given two orientable Riemannian
manifolds V1 and V2, one may ask whether a non-constant quasiregular map
f : V1 → V2 exists. To answer this question Gromov [35, Ch. 6] generalizes
the parabolic type criterion from Section 1 in the following way. Let d(V )
be the supremum of real numbers m > 0 such that for some constant C
the isoperimetric inequality volume(D) ≤ Carea(∂D)m/(m−1) holds for every
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compact D ⊂ V . Here “area” stands for the n−1 dimensional measure. This
number d(V ) is called the isoperimetric dimension of V . The isoperimetric
dimension of Rn with the Euclidean metric is n and the isoperimetric di-
mension of the hyperbolic (Lobachevskii) space Hn is ∞. Ahlfors’ argument
presented in Section 1 proves the following:

Assume that for some point a ∈ V we have

∫ ∞ dr

L1/(m−1)(r)
= ∞,(8.1)

where L(r) is the (n − 1)-measure of the sphere of radius r centered at a.
Then the isoperimetric dimension of any conformal metric on V is at most

m.

As a corollary, one deduces that a nonconstant quasiregular map from V1

to V2, where V1 satisfies (8.1), is possible only if the isoperimetric dimension
of V2 is at most m.

Because f can be lifted to a map f̃ : V1 → Ṽ2 to the universal covering,
one is interested in estimating d(Ṽ2). Gromov proves that for compact V2

the isoperimetric dimension of Ṽ2 depends only on the fundamental group:
a distance and volume can be introduced on every finitely generated group,
and the fundamental group will satisfy the same isoperimetric inequality as
Ṽ2.

As a simple corollary one obtains

(8.2) There is no quasiregular map from R3 to S3\N , where S3 is the

3-dimensional sphere and N is a non-trivial knot.

This result is superseded by the following generalization of Picard’s the-
orem proved by Rickman in 1980

(8.3) For every n ≥ 2 and K ≥ 1 there exists q such that a K-quasiregular

map Rn → S3 cannot omit more then q points.

Holopainen and Rickman [41] later proved that S3 can be replaced with
any compact manifold. The simplest proof of (8.3) is due to Lewis [45]. It is
also one of the most elementary proofs of Picard’s theorem.

The experts were stunned when Rickman constructed examples [49] show-
ing that the number of omitted values may really depend on K. Any finite
number of values can be actually omitted.
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