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And windmills rotate and propellers pull, etc... .

Denote z = x+ iy and let v(z) = v1(z) + iv2(z) be the velocity field of a
stationary flow in a plane region.

We consider a non-rotational flow of an incompressible fluid which means

div v =
∂v1
∂x

+
∂v2
∂y

= 0, (1)

and

curl v =
∂v1
∂y

− ∂v2
∂x

= 0. (2)

Introducing the complex velocity or velocity function

f(z) = v(z) = v1(z)− iv2(z), (3)

we notice that (1) and (2) are exactly the Cauchy–Riemann conditions for f .
Thus the conjugate velocity is analytic if and only if the flow is irrotational
and incompressible.

Euler’s equation is the continuous version of the Newton’s equation: it
says that acceleration of fluid particles is equal to the force. First we compute
the acceleration. Let Q(t) = (x(t), y(t)) be the trajectory of a particle, then
the velocity is dQ/dt = v(Q(t)), and

d2Q

dt2
=

∂v

∂x

dx

dt
+

∂v

∂y

dy

dt

=
∂v

∂x
v1 +

∂v

∂y
v2 = (v · ∇)v.
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Acceleration times mass equals force. The force comes from the pressure
p(z), a scalar (real valued) function. The mass is described by the density ρ.
So we obtain the Euler equation

ρ(v · ∇)v = −∇p.

Minus because the force acts from the place of larger pressure towards the
place with smaller pressure. For constant ρ and irrotational flow this has a
first integral

ρ

2
|v|2 + p = c, (4)

which is called Bernoulli’s law. (Daniel Bernoulli). Indeed, when we compute
∇|v|2 using (2), we obtain 2(v · ∇)v.

We are interested in the flow past an obstacle. Our obstacle is a rigid
body whose boundary is a piecewise-smooth curve γ. We assume that γ is
parametrized counter-clockwise. Then the flow is described by an analytic
function f in the exterior region of γ, and we assume that f(∞) = v∞,
velocity at infinity, is a positive number. This means that the flow is directed
horizontally left to right.

The lifting force L is the total force with which the flow acts on the body.
It comes from the pressure of the flow.

At every point of γ this pressure is perpendicular to γ, and directed in-
wards. The pressure on a small piece of γ is thus given by the formula
(iρ/2)(c− |v2|)dz which follows from Bernoulli’s law. But integral of a con-
stant over a closed curve is zero, so we only need to integrate

−(iρ/2)|v|2dz.

Writing dz = |dz|eiϕ on γ, we obtain v = ±|v|eiϕ Indeed, velocity on γ
must be tangent to γ because the wing is impenetrable for the flow. So
v2 = |v2|e2iϕ, and v2dz = |v|2dz. So the lifting force equals

L = −iρ

2

∫
γ
v2(z)dz = −iρ

2

∫
γ
f(z)

2
dz,

or

L =
iρ

2

∫
γ
f 2(z)dz. (5)

This is called the Blasius–Chaplygin formula.
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We can compute the integral using the residues. If

f(z) = c0 + c−1/z + . . . ,

then
f 2(z) = c20 + 2c0c−1/z + . . . ,

and ∫
γ
f 2(z)dz = 2πi · 2c0c−1 = 4πic0c−1.

Let us determine the physical meaning of the coefficients. c0 = f(∞) = v∞
is the velocity of the flow at infinity. Now −c−1 is the residue:

c−1 =
1

2πi

∫
γ
f(z)dz =

1

2πi

∫
γ
v1dx+ v2dy +

1

2π

∫
γ
v1dy − v2dx.

The first integral is the circulation of the flow around γ, we denote it by C,
while the second integral is the flux through γ. As the curve γ is impenetrable
for the fluid, the flux is zero. So the final result is

L = −iρv∞C.

This is called the Kutta–Joukowski theorem. In words: The lifting force is the
product of the density, velocity and circulation, and directed perpendicular to
the flow. If the flow is left to right, negative, (clockwise) circulation gives the
lifting force directed up.

This explains in principle why airplanes fly, why propellers pull or push,
and why sailing boats can sail at various angles to the wind, etc.

The problem remains, how to find the circulation C for the given profile.
We begin with the more general problem of determining the complex velocity
for a given obstacle.

In any simply connected region occupied by the flow, we can consider
the primitive F of the velocity function f . This function is defined up to
an additive constant. It is called the complex potential. To see its physical
meaning, we write

F = F1 + iF2, f = F ′ = ∂F1/∂x− i∂F1/∂y = v1 − iv2, (6)

so v = ∇F1, and f = F ′. This implies that velocity is perpendicular to the
level lines of F1. This justifies the name velocity potential for F1. Thus the
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velocity is tangent to the level lines of F2 = ImF . This can be also seen by
differentiating F2 along the flow:

dF2

dt
=

∂F2

∂x
v1 +

∂F2

∂y
v2 =

∂F2

∂x

∂F1

∂x
+

∂F2

∂y

∂F1

∂y
= 0,

where we used (6) and the Cauchy-Riemann conditions for F . The imaginary
part F2 of the complex potential is called the stream function and its level
lines are called the stream lines.

In the case that our profile is connected and bounded (monoplane wing1),
the region occupied by the flow is doubly connected, and the complex po-
tential is in general multiple-valued. In the case of a flow around a smooth
obstacle the boundary of the obstacle must be a stream line. The expansion
of F at infinity

F (z) = v∞z + c−1 log z + . . .

is obtained by integration of the expansion of f . Such a function F is de-
termined up to an additive constant by γ and by the numbers v∞ and c−1.
Indeed the difference of two such functions would be analytic in the outside
region of γ, zero at infinity and its imaginary part will be constant on γ.

When γ is a single curve, one such F with c−1 = 0 exists by the Riemann
mapping theorem. Indeed, take for F the conformal map of the exterior
of γ (including infinity) onto the exterior region of a horizontal segment,
normalized so that F (z) ∼ z, z → ∞. (This is called the hydrodynamic nor-
malization btw, it is equivalent to the normalization in the Riemann mapping
theorem; the role of 0 is now played by ∞).

So we always have a complex potential F0 with zero circulation.

Example 1. A zero-circulation flow past a cylinder. We take F (z) =
z + 1/z = 2J(z), where J is the Joukowski function. The complex velocity
is f(z) = 1 − 1/z2. In this example, v∞ = 1, C = 0, L = 0. The flow is
symmetric with respect to the real line.

Example 2. Non-zero circulation flow past a cylinder.

F (z) = z + 1/z + ai log z

This is multiple-valued, but notice that the complex velocity f = F ′ is well
defined, and the stream lines are also well defined, because the branches of F

1The case of biplane wing is even more interesting mathematically.
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differ by real additive constants. Also all branches of F send the unit circle
to horizontal segments.

For this function, the circulation is −2πa, so positive a corresponds to a
lifting force directed upwards. To sketch the flow we find the critical points
f(z) = 0. We have

f(z) = 1−z−2+ia/z = 0, z2+iaz−1 = 0, z1,2 = −ia/2±
√
1− a2/4. (7)

When 0 ≤ a < 2 both critical points lie on (the lower half of) the unit circle.
The flow is qualitatively the same as in Example 1, but the symmetry is
broken. If a = 2 the critical points coincide, and if a > 2 they are pure
imaginary, but only one of them is in the region occupied by the flow (that
is outside of the unit circle). This permits to sketch the flow.

Now we can find all possible flows with given circulation around any given
(connected) obstacle by finding a conformal map from the flow region onto
the exterior of the unit disc and transplanting the flow of Example 2. If ϕ is
the conformal map and f the velocity field from Example 2, then

(f ◦ ϕ)ϕ′ (8)

is the transplanted velocity field. (The usual rule of mapping vectors).
All this leaves open the question how to find the circulation for the

given γ.
For this we have the Joukowski-Kutta hypothesis. (It is called the Chap-

lygin condition in [2, 3, 4]). A realistic airfoil profile has a sharp edge in
the back. Sharp edge means an interior angle πα in the flow region (that is
exterior angle of γ) with α ∈ (1, 2]. The conformal map ϕ of the flow region
onto the exterior of the unit disc is thus of the form ϕ(z) ∼ (z−c)1/α where c
is the coordinate of the edge. So the derivative ϕ′(c) is infinite at this point:

ϕ′(z) ∼ (z − c)1/α−1 → ∞, z → c.

The only way to compensate this is to have f(ϕ(c)) = 0, and the Joukowski–
Kutta hypothesis is that this always happens in the real flows. This hypoth-
esis permits to compute the circulation and the lifting force for any such
given profile. Indeed, the curve γ uniquely defines the normalized conformal
map ϕ, thus it defines the point ϕ(c), and this ϕ(c) should coincide with
the point z2 of Example 2, according to Joukowski’s hypothesis. So we can
compute parameter a of Example 2 and thus the circulation, the lifting force,
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and the whole velocity field. One only needs to know the conformal map ϕ.
This map can be always approximated numerically for a given curve γ. The
hypothesis is well verified experimentally: under certain conditions, the flow
indeed leaves the airfoil at the sharp edge.

Example 3. Suppose that our profile is the segment [e−iα,−e−iα], and as
always v∞ = 1. The “sharp edge at the back” is e−iα. This angle α is called
the angle of attack.

We map conformally the complement of the profile onto the complement
of a disc, so that the map is normalized at infinity. The map is unique and
is given by the formula

z 7→ e−iαJ−1(zeiα),

where J is the Joukowski function. The right sharp edge is mapped to the
point e−iα. We compose this map with the map of the Example 2, and the
condition that the stream lines leave the profile at the edge gives

a = 2 sinα.

Thus, for small angles of attack, the lifting force is proportional to the angle
of attack.

It is somewhat embarrassing that this theory, which belongs to Kutta and
Joukowski was published only in 1902.

The only mathematical theory that existed before that was due to New-
ton. Newton considered the following model. The air consists of hard balls
which elastically collide with the lower face of the inclined plane, as in Ex-
ample 3, and this creates a pressure on this lower face, creating the lifting
force. This theory gives that the lifting force is proportional to the square of
the angle of attack.

Some historians of science speculate [1] that Newton’s theory actually
delayed the development of aviation. However by the time when Lilienthal
(1891) and the Wright brothers (1896) started their experiments with gliders,
is was well-known that Newton’s theory cannot be correct.2

Joukowski found a 2-parametric family of realistic profiles for which the
conformal map ϕ is an elementary function (Joukowski’s function, familiar
to every student of Complex Variables). They are obtained in the following

2There is an interesting recent twist in this story. It was found that Newton’s theory
better describes the flight at hypersonic speeds.
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way. Consider the point −a + ib where a and b are positive numbers and

a2 + b2 < 1. Let K be the circle of radius
√
(1 + a)2 + b2 centered at the

point −a + ib. This circle passes through 1. Joukowski map maps K onto
some curve which has a sharp edge at the image of the point 1. The exterior
angle at this point (which is interior for the region occupied by the flow)
equals 2π because Joukowski’s function has a critical point at 1 and doubles
all angles at this point.

From the description above, it is easy to write a short program in Maple
or any other language which will draw Joukowski’s profiles. They are simple
algebraic curves (images of circles under z + 1/z), and the old aerodynamic
books contain recipes for their construction with compass and ruler, see, for
example a beautiful picture in [6]. Joukowski profiles were actually used for
several airplane wings https://m-selig.ae.illinois.edu/ads/coord database.html

Some Joukowski profiles.
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[1] Th. von Kármán, Aerodynamics. Selected topics in the light of their
historical development, Cornell Univ., 1954. (Dover, 2004).

[2] M. A. Lavrent~ev, B. V. Xabat, Metody teorii funkci$i kompleksnogo
peremennogo, Moskva, 1973 (4-th edition).

7



[3] M. A. Lawrentjew und B.V. Schabat, Methoden der komplexen Funktio-
nentheorie, VEB, Berlin 1967.

[4] M. A. Lavrentiev, B. V. Shabat, Métodos de la teoria de las funciones de
una variable compleja, Moscow, 1991.

[5] Sorry, no English translation of this book [2-4].

[6] L.M. Milne-Thomson, Theoretical aerodynamics, originally published in
1947, there are many later editions.

[7] H. Lamb, Hydrodynamics, Cambridge University press. Original: Cam-
bridge 1932, latest edition 1993.

[8] Wikipedia: Airfoil, “Kutta–Joukowski Theorem”, “Lifting force”, “Niko-
lai Zhukowsky”, “Joukowski airfoil”.

8


