Math 452/525 final exam, fall 2020

NAME: A. Eremenko
You may use the textbook from this course, or your notes. But no help from a human, internet, or computer/calculator.

For each problem, please enter your ANSWER in the indicated place, and then show your work.

1. Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

(The answer should be a real number).
ANSWER: $(\pi / \sinh \pi-1) / 2$.
2. Find the radii of convergence of the following series:
a) $\sum_{n=1}^{\infty} \frac{5^{n}}{n} z^{2 n}$,

ANSWER: $1 /$ sqrt5.
b) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!} z^{n}$,

ANSWER: $1 / e$.
c) $\sum_{n=1}^{\infty} \frac{n!}{10^{n}} z^{n}$,

ANSWER: 0.
d) $\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{e^{z}}{z^{2}+z+2}$,

ANSWER: $\sqrt{2}$.
e) $\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{\log (z+2)}{z+1}$.

ANSWER: 2. (Zero of the denominator at $z=-1$ cancels since $\log 1=$ $0)$.
3. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\cos (x \sqrt{2})}{x^{4}+1} d x
$$

(The answer should be a real number).

ANSWER: $\frac{\pi}{2 e \sqrt{2}}(\sin 1+\cos 1)=\frac{\pi}{2 e} \sim(1+\pi / 4)$.
4. Evaluate the integral

$$
\int_{|z|=2}\left(z^{3}+z\right) \cos \left(\frac{1}{z}\right) d z
$$

where the circle is described counterclockwise.
ANSWER: $-11 \pi i / 12$.
5. For which complex values of a the equation

$$
\cot z=a
$$

has no complex solutions?
ANSWER: $a=1$ and $a=-i$.
6. a) Find the conformal map f of the region

$$
\{z: \operatorname{Re} z>0, \operatorname{Im} z>0,|z|<1\}
$$

onto the upper half-plane, such that

$$
f(i)=0, \quad f(0)=1, \quad f(1)=\infty .
$$

b) Find $f((1+i) / 2)$.

ANSWER: a) $f(z)=\frac{J\left(z^{2}\right)+1}{J\left(z^{2}\right)-1}$, but there can be other forms of the answer. b) $(-7+24 i) / 25$.
7. How many solutions does the equation

$$
e^{z-2}=z^{2}
$$

have in the unit disk $\{z:|z|<1\}$?

ANSWER: 2.
8. Does there exist a real function $u(x, y)$ such that the function

$$
f(x+i y)=u(x, y)+i\left(x-x^{3}+3 x y^{2}\right)
$$

is analytic in the whole plane?
If the answer is "no", explain why; if the answer is "yes", find this function u.

ANSWER: Yes. $u(x, y)=-y-y^{3}-3 x^{2} y+c$.

