
CANONICAL EMBEDDINGS OF PAIRS OF ARCS
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Abstract. We show that for given four points in the Riemann sphere and
a given isotopy class of two disjoint arcs connecting these points in two
pairs, there exists a unique configuration with the property that each arc
is a hyperbolic geodesic segment in the complement of the other arc.

In the recent paper [PW20], Peltola and Wang made a remarkable restate-
ment of results in [EG02, EG11] about the existence and uniqueness of a real
rational function with prescribed real critical points. To state this precisely,
we consider chord diagrams which are cell decompositions of the closed unit
disk with prescribed vertices a1, . . . , a2d´2, d ě 2, on the unit circle, where
each vertex has degree 3. We call such a decomposition canonical if every edge
is a hyperbolic geodesic in the union of this edge with two faces adjacent to it.

Theorem 1.1 in [PW20] states that for any prescribed points a1, . . . , a2d´2
there is a unique canonical chord diagram in every combinatorial class. This
canonical chord diagram is the preimage of the real line under a real ratio-
nal function of degree d with critical points at a1, . . . , a2d´2. This theorem
has important applications for the study of the Stochastic Loewner Evolution
(SLE).

The number of combinatorial classes of chord diagrams with prescribed ver-
tices is finite: it is the Catalan number. In this note we give a simple example
of a similar problem with four prescribed points and infinitely many canonical
configurations.

Our configurations consist of four distinct points a0, a1, a2, a3 in the Rie-

mann sphere pC “ C Y t8u and two disjoint arcs γ0 and γ1, where γ0 has the
endpoints a0 and a1, and γ1 has the endpoints a2 and a3. We say that two such
configurations are equivalent if the points are the same, and the arcs of the
first configuration can be deformed into the arcs of the second configuration
by an isotopy that keeps the endpoints of the arcs fixed during the isotopy. A
configuration is called canonical if for each k P t0, 1u, the arc γk is a hyperbolic

geodesic segment in the simply connected hyperbolic region pCzγ1´k.
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Theorem. For every equivalence class of configurations, there exists a unique
canonical configuration.

Our proof will show that one can obtain an explicit description of canonical
configurations as follows. We may assume without loss of generality that

(1) pa0, a1, a2, a3q “ p8, e1, e2, e2q,

where e1, e2, e3 P C and e1 ` e2 ` e3 “ 0. Let ℘ be the Weierstrass function
satisfying

(2) p℘1q2 “ 4p℘´ e1qp℘´ e2qp℘´ e3q.

We denote the line segment joining two points z, w P C by rz, ws. Then each
canonical configuration for the points as in (1) has the form

(3) γ0 “ ℘pr0, ω1{2sq, γ1 “ ℘prω2{2, pω1 ` ω2q{2sq,

where the pair ω1 and ω2 generates the period lattice of ℘, and e1 “ ℘pω1{2q,
e2 “ ℘pω2{2q, and e3 “ ℘ppω1 ` ω2q{2q.

In order to prove our theorem, we first state some auxiliary facts. An

anti-conformal involution of a region D in the Riemann sphere pC is an anti-
conformal homeomorphism σ of D onto itself such that σ ˝σ “ idD, where idD
denotes the identity map on D.

We will use the following well-known facts about anti-conformal involutions.

Lemma 1. Let D be a simply connected hyperbolic region in pC, and σ an anti-
conformal involution of D. Then the set of fixed points of σ is a hyperbolic
geodesic. Conversely, for every hyperbolic geodesic there exists a unique anti-
conformal involution of D that fixes all points on this geodesic.

Proof. By the Riemann mapping theorem, we may assume that D is the unit
disk D “ tz P C : |z| ă 1u. If C is a hyperbolic geodesic in D, then C is an
arc of a circle or a line segment that is orthogonal to the unit circle BD. Then
reflection in C is an anti-conformal involution σC of D that fixes every point
of C.

Note that if C “ I “ p´1, 1q, then σIpzq “ z̄ and so the anti-conformal
involution σI is a hyperbolic isometry.

Now let σ be an arbitrary anti-conformal involution of D. Then σ is also
a hyperbolic isometry. Indeed, τ “ σ ˝ σI is a conformal automorphism of D
and hence a hyperbolic isometry. This implies that σ “ τ ˝ σI is a hyperbolic
isometry as well.

This in turn implies that σ has a fixed point w0 P D, namely, for w0 we can
take the midpoint of the hyperbolic geodesic segment S joining some point
z0 P D with σpz0q P D. To see this, note that σ is an isometry on S “ σpSq
that interchanges the endpoints of S.
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By conjugating with an auxiliary automorphism, we may assume that w0 “

0. Then τ “ σ ˝ σI is an automorphism of D that fixes 0. Hence τpzq “ eiθz
with θ P R. It follows that σpzq “ pτ ˝ σIqpzq “ eiθz, and so σ is equal to
the reflection σC in the hyperbolic geodesic C “ teiθ{2t : ´1 ă t ă 1u. In
particular, σ fixes the points in C.

The argument also show that each anti-conformal involution of σ of D has
the form σ “ σC for some hyperbolic geodesic C. This implies that the fixed
point set of σ uniquely determines σ. �

Lemma 2. An anti-conformal involution σ of an annulus A “ tz P C : 1 ă
|z| ă Ru with R ą 1 that leaves each boundary component invariant is of the
form σpzq “ eiθz with θ P R.

Note that a priori the involution σ is not defined on the boundary of A;
so by invariance of the boundary components we mean that σpzq Ñ BkA as
z P AÑ BkA for each boundary component BkA “ tz P C : |z| “ Rku of A for
k “ 0, 1.

Proof. Let τpzq “ z. Then ρ “ σ ˝ τ is a conformal automorphism of A
that preserves the boundary components of A. It is well-known that then
ρpzq “ eiθz with θ P R. Hence σpzq “ pρ ˝ τqpzq “ eiθz. �

Proof of the Theorem. We assume that we have some canonical configuration.
We will analyze the situation and will obtain an explicit description from which
existence and uniqueness will be evident.

So suppose the disjoint arcs γ1 and γ2 in pC form a canonical configuration.

Then by Lemma 1, there exists an anti-conformal involution σk : pCzγ1´k Ñ
pCzγ1´k fixing the points in γk for k P t0, 1u.

If we restrict these maps to the ring domain R “ pCzpγ0Yγ1q, then we obtain
anti-conformal involutions of R fixing the boundary components. Now R is
conformally equivalent to an annulus A “ tz : 1 ă |z| ă Ru with R ą 1. Then
by Lemma 2, each anti-conformal involution σk on R correspond to a reflection
τk in a line through the origin on A.

Conversely, suppose that τ0 and τ1 are two reflections in lines through the
origin. Then we can identify or “weld” the points on each boundary component
BkA of A together by using the map τk for k “ 0, 1. The quotient space
carries a natural conformal structure, and is hence conformally equivalent to
the Riemann sphere by the uniformization theorem. This sphere will carry
two distinguished arcs γk, k “ 0, 1, corresponding to each boundary BkA after
the welding. Note that each reflection τk passes to the quotient of AY BkA to
an anti-conformal involution fixing the points on BkA. This induces an anti-

conformal involution of pCzγ1´k fixing the points on γk. By Lemma 1, the arc
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γk is a hyperbolic geodesic segment in the hyperbolic region pCzγ1´k. It follows
that γ0 and γ1 form a canonical configuration.

We have shown that the canonical configurations are precisely those that can
be obtained from an annulus by welding the points in each boundary component
BkA together BkA by a reflection τk in a line through the origin for k “ 0, 1.

Now an annulus A “ tz P C : 1 ă |z| ă Ru carries an essentially unique flat
conformal metric with the length element

(4) |dz|{|z|

in which all circles tz P C : |z| “ ru, 1 ď r ď R, are geodesics. For the proof
of uniqueness, one extends the metric to C˚ by multiple reflections and then
lifts it to the universal cover C. The resulting metric in C will be complete.
That a flat complete metric in C is unique up to a constant multiple follows
from the theorem of A. Huber [H57].

After the welding of the boundary components BkA with each reflection τk,
the flat metric in (4) descends to a flat metric on the quotient space with
possible singularities in the points of γ0 Y γ1. Since BkA is a geodesic in the
flat metric (4), γk will be a geodesic arc in this metric with conic singularities
at the endpoints and the angles at these singularities are π.

So we obtain the following geometric description of canonical configurations:
to each canonical configuration corresponds a flat metric on the sphere with
four conic singularities at a0, a1, a2, a3 with cone angle π such that γ0 and γ1
are geodesic segments.

The converse is also true: given a flat metric on the sphere with four conic
singularities a0, a1, a2, a3 with cone angles π, any pair of disjoint geodesics, γ0
connecting a0 with a1, and γ1 connecting a2 with a3 is a canonical configura-
tion.

To see this, note that we can cut open the sphere along the arcs γ0 and

γ1. Then up to scaling, R “ pCzpγ0 Y γ1q equipped with the flat metric is
isometric to an annulus A “ tz P C : 1 ă |z| ă Ru with R ą 1, equipped
with the metric (4). Here each geodesic γk is doubled and represented by two
circular arcs αk and α1k of equal length that have common endpoints and whose
union is a boundary component of A. We may assume that γk corresponds to

BkA “ αk Y α1k for k “ 0, 1. The sphere pC with the flat metric with the arcs
γ0 and γ1 can be recovered from A if we identify correspond points on αk and
α1k by an isometry fixing the common endpoints of αk and α1k. But such an
isometry is necessarily given by a reflection τk in a line though the origin. So
we are back to our first description of canonical configurations as a quotient
space of an annulus A.

A flat metric on the sphere pC with four prescribed conic singularities with

angles π gives pC the structure of a parabolic orbifold. The corresponding
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flat metric is unique up to scaling, and obtained by pushing the Euclidean
metric in the plane forward by the universal orbifold covering map Θ: C Ñ
pC. For a parabolic orbifold with four conic singularities with angles π this
universal orbifold covering map Θ is a Weierstrass ℘-function followed by a
Möbius transformation. With the normalization (1), we actually have Θ “ ℘,
where ℘ is as in (2). Then the length element of the flat metric is given by

ds “ |℘1pzq||dz| and geodesic segments on pC in the flat metric are given by
images of Euclidean geodesic segments under ℘ (for a thorough discussion of
the relevant facts about orbifolds see [BM17, Sections 3.5, A.9, A.10]).

For the given normalization (1), the arc γ0 in a canonical configuration lifts
under ℘ to a Euclidean line segment rz0, z1s Ď C such that ℘ is an isometry of
rz0, z1s onto γ0. Here we may assume that ℘pz0q “ 8 and ℘pz1q “ e1.

Let Γ Ď C be the period lattice of ℘. Since we have translation invariance
of ℘ under Γ and ℘´1p8q “ Γ, we may further assume that z0 “ 0. Since
℘pz1q “ e1, the point z1 must be a half-period of ℘, i.e., z1 P

1
2
Γ. Now ℘ is

injective on rz0, z1s “ r0, z1s, and so the point z1 must be of the form z1 “ ω1{2,
where ω1 ‰ 0 is a primitive element of Γ, i.e., ω1 cannot be represented in the
form ω1 “ nγ with n P N, n ě 2, and γ P Γ. It follows that γ0 “ ℘pr0, ω1{2qs
as in (3).

Since ω1 is a primitive element of Γ, there exists an element ω2 P Γ such
that ω1 and ω2 form a basis of Γ. For given ω1, the choice of ω2 is not unique,
but if we make one choice for ω2, then all other choices ω12 are of the form

(5) ω12 “ ˘ω2 ` nω1

with n P Z. Note that ℘ maps the half-periods 1
2
ω12 to e2 or e3. With suitable

choice of ω2 we may assume that ℘pω2{2q “ e2.
We now lift the second arc γ1 in our canonical configuration under ℘ to

a line segment rz2, z3s Ď C starting at z2 “ ω2{2. Here ℘pz3q “ e3, and so
z3 P

1
2
Γ is a half-period.

Since the ℘-function satisfies

(6) ℘p˘z ` γq “ ℘pzq for z P C and γ P Γ,

it is invariant under reflections in half-periods. This implies that ℘´1pγ0q
contains the full line passing through z0 “ 0 and z1 “ ω1{2. Similarly, ℘´1pγ1q
contains the full line passing through z2 “ ω2{2 and the half-period z3. Since
γ0 and γ1 are disjoint, these lines cannot meet and hence must be parallel. It
follows that z3 necessarily has the form z3 “

1
2
pnω1 ` ω2q with n P Z. Since

℘pz3q “ e3, the integer n must be odd, and since ℘ is injective on the lift
rz2, z3s, we must have z3 “

1
2
p˘ω1 ` ω2q. By reflection symmetry of ℘ in the

half-period z2 “ ω2{2 and replacing the original lift rz2, z3s by its reflection
image in z2, we may assume that z3 “

1
2
pω1 ` ω2q.
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We conclude that under the normalization (1), arcs in a canonical configu-
ration γ0 and γ1 have the form (3). Conversely, arcs as in (3) form a canonical
configuration as follows from our geometric description of canonical configu-

ration in terms of flat metrics on pC.
It remains to show that under the assumption (1) we obtain exactly one

canonical configuration of arcs in each isotopy class.
Our previous analysis shows that in (3) the arcs γ0 and γ1 are uniquely

determined once we know the primitive element up to sign. Indeed, it is
clear that this determines γ0. Moreover, the choice of ω1 up to sign does
not determine ω2 uniquely, but it follows from (5) and (6) that the arc γ2 “
r℘pω2{2, pω1 ` ω2q{2s is uniquely determined independent of the choice of the
sign of ω1 and the choice of ω2.

Now suppose we have chosen a fixed basis ω0
1 and ω0

2 of the period lattice
Γ. Then the primitive elements ω1 of Γ are precisely the elements of the form

ω1 “ rω0
1 ` sω

0
2,

where r, s P Z are relatively prime. By choosing the appropriate sign of ω1, we

may assume that s ě 0 and that r “ 1 if s “ 0. The ratio r{s P pQ “ QY t8u
describes the slope of the line in C passing through 0 and ω1 and we have a

bijective correspondence between slopes r{s P pQ and primitive elements ˘ω1

of Γ up to sign.
Now it is a well known fact that isotopy classes of arcs in a sphere with four

marked points are in one-to-one correspondence with these rational slopes

r{s P pQ (see [FM12, Chapter 2] for a related discussion). In our case, ˘ω1 Ø

℘pr0, ω1sq induces a bijective correspondence between primitive elements ˘ω1

of Γ up to sign and isotopy classes of arcs γ0 in pC the marked points as (1)
(see [BHI21, Section 2.4] for a thorough discussion in the spirit of the present
considerations). Note that the isotopy class of γ0 uniquely determines the
isotopy class of the pair pγ0, γ1q. The statement follows. �
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