Math 530

Practice problems for the final exam

1. Suppose that ϕ is a continuous function on the unit circle in the complex plane, and let C denote the unit circle parametrized via $z(t)=e^{i t}, 0 \leq t \leq$ 2π. Let $\Omega=\{w \in \mathbb{C}:|w|>1\}$. For $w \in \Omega$, define

$$
f(w)=\int_{C} \frac{\phi(z)}{z-w} d z
$$

What kind of singularity does f have at infinity? Use careful estimates and explain.
2. Suppose that A is a finite set and that $f(z)$ is analytic on $\mathbb{C}-A$ with poles at each point in A. Prove that if f has a removable singularity at infinity, then f must be a rational function.
3. Let $a_{0}=0$ and $a_{1}=1$. The Fibonacci numbers are defined inductively via

$$
a_{n+2}=a_{n+1}+a_{n} \quad \text { for } n=0,1,2, \ldots
$$

Find the radius of convergence of the power series $\sum a_{n} z^{n}$. Hint: Let

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

and compare the power series for $z^{2} f(z), z f(z)$, and $f(z)$. Find a closed form formula for f. When you get the picture, make sure everything you say is true. (For example, don't say that $f(z)$ is defined someplace until you know it is.)
4. How many zeroes does the polynomial

$$
z^{1998}+z+2001
$$

have in the first quadrant? Explain your answer.
5. Suppose that f is a non-vanishing analytic function on the complex plane minus the origin. Let γ denote the curve given by $z(t)=e^{i t}$ where $0 \leq t \leq$ 2π. Suppose that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

is divisible by 3 . Prove that f has an analytic cube root on $\mathbb{C}-\{0\}$.
6. Suppose that $\left\{a_{k}\right\}_{k=1}^{N}$ is a finite sequence of distinct complex numbers and that f is analytic on $\mathbb{C}-\left\{a_{k}: k=1,2, \ldots, N\right\}$. Prove that there exist constants $c_{j}, j=1,2, \ldots, N$, such that

$$
f(z)-\sum_{k=1}^{N} \frac{c_{k}}{z-a_{k}}
$$

has an analytic antiderivative on $\mathbb{C}-\left\{a_{k}: k=1,2, \ldots, N\right\}$.
7. Suppose $a_{1}, a_{2}, \ldots, a_{N}$ are distinct nonzero complex numbers and let Ω denote the domain obtained from \mathbb{C} by removing each of the closed line segments joining a_{k} to the origin, $k=1, \ldots, N$. Prove that there is an analytic function f on Ω such that

$$
f(z)^{N}=\prod_{k=1}^{N}\left(z-a_{k}\right)
$$

8. Find a one-to-one conformal mapping of the "piece of pie"
$\left\{r e^{i \theta}: 0<r<1,0<\theta<\pi / 4\right\}$ onto the horizontal strip $\{z: 0<\operatorname{Im} z<1\}$.
9. Suppose that u is a continuous real valued function on $\overline{D_{1}(0)}$ and that

$$
\begin{equation*}
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z+(1-|z|) e^{i \theta}\right) d \theta \tag{*}
\end{equation*}
$$

for each $z \in D_{1}(0)$. (This equality means that u is only known to satisfy the averaging property on circles like the one pictured below.) Prove that u is harmonic in $D_{1}(0)$.

Note: $(*)$ means that $u(z)$ is equal to the average of u over the internally tangent circle centered at z.

