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The differential equation

∆u + e2u = 0 (1)

in a simply connected plane region has the general solution

u = log
2|f ′|

1 + |f |2
(2)

where f is a meromorphic locally univalent function in this region.
Locally univalent is the same as local homeomorphism, and for a
meromorphic functions it is equivalent to the condition that
f ′(z) ̸= 0 and all poles of f are simple.
This form of the solution was discovered by J. Liouville in 1850.
An equivalent fact is that every two Riemannian metrics of
constant curvature are locally isometric is contained in the paper
of F. Minding (1839).



The metric σ related to our equation is defined by its length
element e2u(z)|dz |, and the meromorphic function f in (2) is called
the developing map. So our metric σ is the pull back of the
standard spherical metric with line element

2|dz |
1 + |z |2

.

The expression

f # =
2|f ′|

1 + |f |2

is called the spherical derivative of the meromorphic function f .
The purpose of this talk is to explain how the theory of
meromorphic functions can answer questions about equation (1).



We begin with introducing the Nevanlinna characteristic of a
meromorphic function, which is an analog for transcendental
functions of the degree of a rational function. For a meromorphic
function in the plane we define

A(r , f ) =
1

π

∫
|z|≤r

|f ′|2

1 + |f |2
dxdy =

1

4π

∫
|z|≤r

e2udxdy .

This is the ratio of the area of the disk |z | ≤ r with respect to σ to
the area of the unit sphere, which can be interpreted as an average
covering number of the sphere by the image of the disk. Then it is
useful to take an average in r :

T (r , f ) =

∫ r

0

A(t, f )

t
dt.

This is called the Nevanlinna characteristic of f . One advantage of
this definition is that T (r , f ) has nicer properties than A(r , f ). We
list some of these properties.



1. For a non-constant f , T (r , f ) is increasing, tends +∞, and is
convex with respect to the logarithm (rT ′(r) ≥ 0). When f is
rational of degree d

T (r , f ) = (d + o(1)) log r ,

while for every transcendental function f

T (r , f )

log r
→ ∞.

2. T (r , fg) ≤ T (r , f ) + T (r , g) + O(1),

T (r , f + g) ≤ T (r , f ) + T (r , g) + O(1),

T (r , 1/f ) = T (r , f ), T (r , f 2) = 2T (r , f ) + O(1).

These properties show that T (r , f ) is a generalization of degree.



There is an alternative definition. Let n(t) be the number of poles
of f , counting multiplicity, in |z | ≤ t. We define

N(r , f ) =

∫ r

0

n(t)− n(0)

t
dt + n(0) log r ,

m(r , f ) =
1

2π

∫ π

−π
log+|f (re iθ)|dθ,

Then
T (r , f ) = m(r , f ) + N(r , f ) + O(1),

from which the second set of properties follows.
The main technical tool of Nevanlinna theory is the Lemma on the
logarithmic derivative:

m(r , f ′/f ) = O(logT (r , f ) + log r), r → ∞, r ̸∈ E

where E is a set of finite measure.



These elementary properties immediately imply the famous
theorem of Chen and Li (1991):

If the area of σ is finite then the developing map is
linear-fractional.

Indeed, a locally univalent rational function must be of degree 1.
Once this is established, a direct computation gives that all such
solutions are radially symmetric with respect to some center, and
other properties.
In this talk, I’ll explain several other results on equation (1) which
were recently obtained by Changfeng Gui, Qinfeng Li, Lu Xu,
Walter Bergweiler, Jim Langley and myself.



Let us impose a growth restriction on solutions: we will say that
u ∈ N(k) if

lim sup
z→∞

u(z)

log |z |
= k < ∞, N :=

⋃
k<+∞

N(k).

Theorem 1. Class N(k) is non-empty if and only if k = −2 or 2k is
a non-negative integer. For solutions in N(−2), function f is
linear-fractional, while for solutions in N(0), f is an exponential,
and for all k ≥ 0 we have the following asymptotics:

f #(re iθ) = −(c + o(1))rk+1| sin(k + 1)(θ − θ0)|,

with some c > 0 and θ0 ∈ R.
In particular, this theorem gives a classification of all bounded from
above solutions and explicit formulas for them:



Solutions bounded from above belong to N(0) ∪ N(−2), so the
corresponding developing map is either linear-fractional or an
exponential.
It follows from the asymptotic formula that a solution of class
N(k) cannot be concave, except when k ≤ 0. It can be verified
directly that solutions in N(−2) are not concave.
One can generalize this result. A function u is called quasiconcave
if for every segment [a, b] and a point c ∈ [a, b] we have

u(c) ≥ min{u(a), u(b)}.

Theorem 2. For quasiconcave solutions of equation (1) the
developing map is either exponential of linear-fractional.

For solutions of class N(k), k < ∞ this follows from the
asymptotic formula above, but extending this to all solutions of (1)
requires more complicated tools.



The union of classes N(k) corresponds to developing maps of finite
order, where the order ρ of a meromorphic function is defined by

ρ = lim sup
r→∞

logT (r , f )

log r
,

so the order of a function f ∈ N(k) is k + 1 when k ≥ 0.
Theorem 1 is an immediate consequence of the results of R.
Nevanlinna (1932), and I will sketch a proof.
Consider the Schwarzian derivative of f :

P =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

. (3)

When f is meromorphic and locally univalent, P has no poles, so it
is an entire function. On the other hand, the assumption that f is
of finite order permits to estimate the growth of P, using the
Lemma on the logarithmic derivative, and one obtains
T (r ,P) = O(log r).



So P must be a polynomial, and we can consider (3) as a
differential equation for f .
Now it easy to verify by computation that the general solution of
the Schwarz differential equation is a ratio of two linearly
independent solutions of the linear ODE

w ′′ + (P/2)w = 0,

and for this linear ODE there is a powerful asymptotic theory which
gives asymptotic expansions of solutions. This implies Theorem 1.

For the proof of Theorem 2, we still have that f = w1/w2 is a ratio
of two solutions of a linear differential equation

w ′′ + Aw = 0, (4)



as before, but since no growth estimate is available, A is an
arbitrary entire function, so little can be said about its asymptotic
behavior.
Nevertheless, there is a theory due to Wiman and Valiron, which
gives some control on the asymptotic behavior of an arbitrary
entire function near the points zr where its maximum modulus is
attained:

|f (zr )| = max
|z|=r

|f (z)|.

This theory tells us that in certain neighborhood of such a point
we have

f (z) = (1 + o(1))

(
z

zr

)n(r)

f (zr ),

where n(r) is the central index: the index of the maximal term of
the Taylor series at |z | = r . This result allows an approximate
asymptotic integration of equation (4).



So the proof of Theorem 2 uses asymptotic integration near the
point where the maximum modulus of A is attained.

Next I address the questions of Changfeng Gui and Qinfeng Li
about the diameter of the plane with the metric σ whole line
element is eu|dz |. I recall that the distance between two points is
defined as an infimum of lengths of curves connecting these points
and the length of a curve γ is

|γ| =
∫
γ

2|f ′|
1 + |f |2

|dz |,

where f is the developing map. This length is equal to the length
of the image f (γ) in the standard metric on the sphere.



Since a con-constant meromorphic function in the plane has a
dense image, the diameter of the metric is at least π, and this lower
bound is attained when f is linear-fractional. It also attained for
the case when f (z) = ez . Changfeng Gui and Qinfeng Li computed
the diameter for the case f (z) = ez + t, t ≥ 0 and it is equal to

π + 2arctan t.

These results led them to conjecture that for all other cases (that
is when f is neither linear-fractional nor exponential) the diameter
is strictly greater than π.



This conjecture is confirmed by the following

Theorem 3. The diameter of the plane with metric σ is at least
4π/3, unless the developing map f is linear-fractional or
exponential.

We could not determine whether this lower bound 4π/3 is optimal.
For the proof of Theorem 3, I recall definitions and facts related to
singularities of the inverse function f −1.
Consider germs ϕ of f −1 and its analytic continuation along some
curve Γ : [0, 1) → C. If the endpoint a = γ(1) ∈ C of this curve is
a singularity, then γ(t) = ϕ(Γ(t)) → ∞. So to each singularity
corresponds an asymptotic curve γ with the property that f (γ(t))
has a limit a ∈ C while γ(t) → ∞, t → 1.
If there exists such a curve, then a is called an asymptotic value.



Suppose that some region D ⊂ C contains no asymptotic values.
Then the restriction to each component:

f : a component of f −1(D) → D

is a covering map. In particular, when D is simply connected, this
restriction is a homeomorphism.
Let a ∈ C be an asymptotic value of a locally univalent
meromorphic function f . Let A be the set of all connected
neighborhoods of a. Consider a function V which assigns to every
O ∈ A a component of f −1(O) such that

O1 ⊂ O2 → V (O1) ⊂ V (O2), and
⋂
O∈A

V (O) = ∅.

Each such function V is called a singularity of f −1 over a. The
sets V (O) are called neighborhoods of the singularity. Every
neighborhood of a singularity over a contains an asymptotic curve
with asymptotic value a.



A singularity is called isolated if it has a neighborhood which is not
a neighborhood of any other singularity.

The proof of Theorem 3 consists of two parts.

1. f −1 has a non-isolated singularity. In this case one can show
that there exists a curve γ : (−1, 1) ⊂ C which is doubly
asymptotic, that is γ(t) → ∞, t → ±1 and the two limits
limt→±1 f (γ(t)) exist and are distinct. Moreover, one can find
such a double asymptotic curve of an arbitrarily small diameter ϵ.
Such a curve γ splits the plane into two parts D1 and D2, We
claim that the restrictions of f on Dj have dense images.
This follows from a theorem of Lindelöf:

A bounded analytic function in the unit disk cannot have two
distinct asymptotic values for asymptotic curves ending at the
same point of the unit circle.



Since D1 and D2 are simply connected we can map them on the
unit disk, and infinity will correspond to one point on the unit
circle. So we can apply Lindelöf’s theorem: assuming that f (Dj)
omits a neighborhood of some point a ∈ C we consider the
function 1/(f − a) in Di and obtain a contradiction.

So we can find points zj ∈ Dj such that the distance from f (zj) to
f (γ) is at least π − 2ϵ, and then, since every curve from z1 to z2
must cross γ, we obtain that the diameter of the plane with metric
σ is at least 2π − 4ϵ.



2. All singularities of f −1 are isolated. In this case,
We can find a disk in C in which a branch of f −1 exists, and which
has at least three singularities on its boundary.
Indeed, take an arbitrary branch of f −1 and consider the largest
disk where it is holomorphic. Then the boundary of this disk
contains at least one singularity.
If there is only one, we can move the center of the disk away from
this only singularity, and obtain larger disks (containing the original
disk and all its boundary except the asymptotic value).



This is the place where we use the assumption that singularities are
isolated.
Eventually we find the disks B0 with two singularities on the
boundary. Suppose that there are only two of them.
Let β be an arc of a great circle through the center of B0

equidistant from the two singularities. We can move the center of
B0 along this arc, and obtain a family of disks Bt with the same
two singularities on the boundary.



If this procedure stops for some t ∈ R, we obtain a disk with at
least 3 singularities on the boundary. If it does not stop, then one
can show that f is a universal cover over C minus two points, that
is an exponential function.
So, if f is not an exponential, we obtain a disk in C where a
holomorphic branch of f −1 exists, and which has three singularities
on the boundary. So there are two distinct asymptotic values at
the distance ≤ 2π/3 between them. Considering the shortest curve
between these asymptotic values, we obtain a curve γ in C both
ends of which tend to ∞, and such that f (γ) is a geodesic
segment of length at most 2π/3. This curve divides the plane into
two regions D1 and D2, and the restrictions of f on these regions
has dense image, so the proof is completed in the same way as in
Case 1:



If we have a geodesic arc Γ of length at most 2π/3 in C, then
there is a point at the distance at lest 2π/3 from this curve.

Since the images f (D1) and f (D2) are dense, we can find two
points z1, z2 in C such that both f (z1) and f (z2) are at the
distance at least 2π/3 from f (γ). Then the image of any curve
connecting z1 and z2 must go from f (z1) to f (γ) and then to
f (z2), so this image has length at least 4π/3.
This completes the proof of Theorem 3.



We could not determine whether our estimate 4π/3 is best
possible. The natural candidate for diameter 2π/3 will be a ratio
of two Airy functions, f = w1/w2, where wj are appropriate
solutions of

w ′′ + zw = 0

One can choose these solutions so that f −1 has three singularities
with asymptotic values at the cube roots of unity.
It should not be too hard to compute the diameter of the
corresponding Riemann surface spread over the sphere exactly, but
we did not do this.



Final remark. For functions u ∈ N(k) the diameter of the metric σ
is bounded from above by a constant that depends only on k .
However one can construct a function f (of infinite order) for which
this diameter is infinite. The simplest example of such a function is
a ratio f = w1/w2 of two solutions of the Mathieu equation

w ′′ + (cos z + λ)w = 0,

for some special choice of parameter λ.
The proof is based on the analysis of the Riemann surface spread
over the sphere corresponding to f −1. One can describe this
Riemann surface geometrically (by pasting together certain
spherical triangles), and the Mathieu equation is used to sow that
it is of parabolic type.


