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Abstract

Our main result implies the following theorem: Let f be a tran-
scendental meromorphic function in the complex plane. If f has finite
order ρ, then every asymptotic value of f , except at most 2ρ of them,
is a limit point of critical values of f .

We give several applications of this theorem. For example we prove
that if f is a transcendental meromorphic function then f ′fn with
n ≥ 1 takes every finite non-zero value infinitely often. This proves a
conjecture of Hayman. The proof makes use of the iteration theory of
meromorphic functions.

1 Introduction and main results

In this paper by meromorphic function we mean a transcendental meromor-
phic function in the complex plane C, if the domain of definition is not
explicitly specified. Let f : C → C = C ∪ {∞} be a meromorphic func-
tion. The inverse function f−1 can be defined on a Riemann surface which is
conformally equivalent to C via f−1. In this paper we identify the Riemann
surface of f−1 with C. We want to study the singularities of f−1. This can
be done by adding to C some ideal points and defining neighborhoods of
these points.

∗The second author was sponsored by the Graduiertenkolleg “Analyse und Konstruk-
tion in der Mathematik” at the Technical University of Aachen when this paper was
written. He also thanks NSF for partial support.
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Let us start with precise definitions. Take a ∈ C and denote by D(r, a)
the disk of radius r > 0 (in spherical metric) centered at a. For every r > 0
choose a component U(r) of the preimage f−1(D(r, a)) in such a way that
r1 < r2 implies U(r1) ⊂ U(r2). Note that the function U : r → U(r) is
completely determined by its germ at 0. Two possibilities can occur:

(a)
⋂
r>0 U(r) = {z}, z ∈ C. Then a = f(z). If a ∈ C and f ′(z) 6= 0 or if
a = ∞ and z is a simple pole of f , then z is called an ordinary point.
If a ∈ C and f ′(z) = 0 or if a =∞ and z is a multiple pole of f , then
z is called a critical point and a is called a critical value. We also say
that the critical point z lies over a.

(b)
⋂
r>0 U(r) = ∅. Then we say that our choice r → U(r) defines a (tran-
scendental) singularity of f−1. For simplicity we just call such U a
singularity. We also say that the singularity U lies over a. For every
r > 0 the open set U(r) ⊂ C is called a neighborhood of the singularity
U . So if zk ∈ C, we say that zk → U if for every ε > 0 there exists k0

such that zk ∈ U(ε) for k ≥ k0.

If U is a singularity then a is an asymptotic value, which means that there
exists a curve Γ ⊂ C tending to ∞ such that f(z) → a as z → ∞, z ∈ Γ.
Such Γ is called an asymptotic curve. To construct an asymptotic curve
take a sequence rk → 0 and a sequence zk ∈ U(rk) and connect zk to zk+1

by a curve γk ⊂ U(rk), which is possible because the U(r) are connected.
Then Γ = ∪γk is an asymptotic curve. In particular it follows that every
neighborhood U(r) of a singularity U is unbounded. If a is an asymptotic
value of f , then there is at least one singularity over a. Indeed, let Γ ⊂ C
be an asymptotic curve, on which f(z)→ a. Then for every r > 0 the “tail”
of Γ where f(z) ∈ D(r, a) belongs to f−1(D(r, a)) and we define U(r) as the
component of f−1(D(r, a)) which contains this tail.

Certainly there can be many different singularities as well as critical and
ordinary points over the same point a. Remark that if f is a meromorphic
function, and D ⊂ C̄ contains no critical values and no asymptotic values
then f : f−1(D) → D is a covering. This justifies the name “singularities
of f−1”.

The connection between asymptotic values of f and singularities of f−1

was stated for the first time by A. Hurwitz [17]. The following classification
of singularities is due to F. Iversen [18] (see also [21, 26]).
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A singularity U over a is called direct if there exists r > 0 such that
f(z) 6= a for z ∈ U(r). (Then this is also true for all smaller values of r.)
The simplest case of a direct singularity is the so-called logarithmic branch
point. We say that U is a logarithmic branch point (or logarithmic singularity)
over a if f : U(r)→ D(r, a)\{a} is a universal covering for some r > 0. Thus
if f = exp then the inverse function f−1 = log has two logarithmic branch
points: one over 0 and one over ∞. The function arccos, inverse to cos, has
two logarithmic singularities over ∞.

A singularity U over a is called indirect if it is not direct, i. e. for every
r > 0 the function f takes the value a in U(r). In this case evidently the
function f takes the value a infinitely often in U(r). A simple example of
an indirect singularity is given by the inverse function of f(z) = sin z/z.
Note that in this example the asymptotic value 0 is a limit point of critical
values. M. Heins [15, Theorem 5] proved that the set of direct singularities
of a function inverse to a meromorphic function is always countable.

For a meromorphic function of finite order ρ the celebrated Denjoy–
Carleman–Ahlfors Theorem states that the inverse function has at most
max{2ρ, 1} direct singularities [21, p. 309]. This implies that an entire func-
tion of finite order ρ has at most 2ρ finite asymptotic values [21, p. 313]. On
the other hand, there are meromorphic functions of any given order ρ ≥ 0
such that every point in C is an asymptotic value [7]. So in this case the
number of indirect singularities is infinite.

In the simplest examples like f(z) = sin z/z the indirect singularities are
limits of critical points. More complicated examples show that this is not
the case in general. One such example is contained in the book of L. I.
Volkovyskii [27, p. 70]. He constructs a meromorphic functions f with no
critical points such that the set of asymptotic values has the power of the
continuum (it is actually a Cantor set on the unit circle). So the inverse
function of this function has many indirect singularities because the set of
direct ones is countable by the result of Heins mentioned above. See also
[25], where a similar example is discussed.

Our main result is that in the case of finite order the nature of the sin-
gularities of f−1 is much simpler.

Theorem 1 If f is a meromorphic function of finite order, then every indi-
rect singularity of f−1 is a limit of critical points.

We can easily derive from Theorem 1 a formally stronger version of this
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theorem.

Theorem 1′ Let f be a meromorphic function of finite order. Then every
indirect singularity of f−1 over a ∈ C is a limit point of critical points zk
such that f(zk) 6= a.

Proof. Assume that f has an indirect singularity U over a such that for
some r > 0 the set V := U(r)\f−1(a) contains no critical points. As the
number of direct singularities is finite we may assume that there are no
direct singularities over A := D(r, a)\{a}.

Let us show that
f : V → A (1)

has an asymptotic value a′ ∈ A. If this is not the case then (1) is a cover-
ing. As the fundamental group of the annulus A is Z we conclude that the
fundamental group of V is Z or trivial. In the first case V is a degenerate
annulus and a cannot be an asymptotic value in U(r). So the fundamental
group of V is trivial, that is, (1) is a universal covering. Then f : U(r)→ A
is also a universal covering, which contradicts to our assumption that U is a
neighborhood of an indirect singularity over a.

Thus there is an asymptotic value a′ ∈ A such that the corresponding
(indirect) singularity U ′ has a neighborhood U ′(r′) ⊂ V . Now we apply
Theorem 1 to U ′ to conclude that there are critical points zk ∈ U(r) such
that f(zk) 6= a. This proves Theorem 1′.

Corollary 1 If f is a meromorphic function of finite order and a is an
asymptotic value of f , then a is a limit of critical values ak 6= a or all
singularities of f−1 over a are logarithmic.

Corollary 2 If f is a meromorphic function of finite order ρ and E is the
set of its critical values, then the number of asymptotic values of f is at most
2ρ+ card E′, where E′ stands for the derived set of E.

Proof. Let a be an asymptotic value, a /∈ E′. By Corollary 1 there is a
logarithmic singularity over a. Let us show that the number of logarithmic
singularities is at most 2ρ. For ρ ≥ 1

2
this follows from the Denjoy–Carleman–

Ahlfors Theorem quoted above. It remains to show that there are no logarith-
mic singularities if ρ < 1

2
. Suppose that there is a logarithmic singularity over
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a ∈ C and that f : U(r) → D(r, a)\{a} is a universal covering. Then U(r)
is a simply-connected unbounded domain. Assume without loss of generality
that a =∞. Then there exists R > 0 such that R < |f(z)| <∞ for z ∈ U(r)
and |f(z)| = R for z ∈ ∂U(r). Define a function u by u(z) = log(|f(z)|/R)
for z ∈ U(r) and u(z) = 0 for z ∈ C\U(r). It is easy to see that u is subhar-
monic in C. Since u is bounded on ∂U(r) we deduce from a classical theorem
due to Wiman (see for example [14, Theorem 6.4]) that the order of u is at
least 1

2
. But the order of f is greater or equal than the order of u.

Corollary 3 If a meromorphic function of finite order ρ has only finitely
many critical values, then it has at most 2ρ asymptotic values.

Corollary 3 was conjectured by the second author in his talk on the AMS
meeting in Springfield, Missouri, in October 1991.

Theorem 1 and its corollaries may be useful in many questions involving
meromorphic functions of finite order, in particular in the iteration theory
of rational [1, 3, 24] and transcendental meromorphic [2] functions. The role
of singularities in the iteration of transcendental functions is discussed in [2,
§4.3]. The connection with rational functions is via Poincaré functions.

We will apply our result to the distribution of values of some differential
polynomials. In [13, Problem 1.19] W. K. Hayman conjectured that if f is a
nonconstant meromorphic function and n ∈ N, then f ′fn takes every finite
non-zero value. Earlier he had proved this for n ≥ 3. More precisely, he had
shown that if f is transcendental, then f ′fn takes every finite non-zero value
infinitely often if f is meromorphic and n ≥ 3 [11, Corollary to Theorem 9]
or if f is entire and n ≥ 2 [11, Theorem 10]. J. Clunie [5] proved this for
the case that f is entire and n = 1. Later E. Mues [19, Satz 3] settled the
case that f is meromorphic and n = 2 and W. Hennekemper [16] extended
Clunie’s result to functions which have few poles in some sense.

We prove here the last unsolved case (n = 1 for meromorphic functions).
Our method gives also a unified proof of all results on Hayman’s conjecture
mentioned above.

Theorem 2 If f is a transcendental meromorphic function and m > l are
positive integers then (fm)(l) assumes every finite non-zero value infinitely
often.
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Hayman’s conjecture corresponds to the case l = 1 in this theorem. The
example f(z) = ez shows that 0 and ∞ can actually be omitted. Actually
only the case m = 2, l = 1 in Theorem 2 is new. Recently Y. F. Wang [28]
proved the statement of Theorem 2 for all m ≥ 3 and all l ≥ 0. Applying
Theorem 2 to 1/f instead of f with m = 2 and l = 1 we obtain the following
result.

Corollary 4 If f is a transcendental meromorphic function then f ′+f 3 has
infinitely many zeros.

The corresponding result for f ′ + fn, n ≥ 4, can be found in the papers of
Hayman and Mues cited above.

Theorem 2 will be deduced from the following result which may be of
independent interest.

Theorem 3 Let f be a meromorphic function of finite order. If f has in-
finitely many multiple zeros, then f ′ assumes every finite non-zero value in-
finitely often.

The proof of Theorem 3 uses iteration theory of meromorphic functions. The
deduction of Theorem 2 from Theorem 3 is based on a rescaling lemma of
Zalcman and Pang (Lemma 4), which allows to reduce the matter to the case
of finite order. On the other hand we will construct an example which shows
that Theorem 3 fails for functions of infinite order.

As a second application of Theorem 1 we give a unified proof of the
following results recently obtained by J. Clunie, J. Langley, J. Rossi, and the
second author [6, 8].

Theorem 4 Let f be a transcendental meromorphic function of order ρ.

(a) If ρ < 1 then f ′ has infinitely many zeros.

(b) If ρ < 1
2

then f ′/f has infinitely many zeros.

(c) If f is entire and ρ < 1 then f ′/f has infinitely many zeros.

Examples in [6] show that all bounds for ρ in this theorem are sharp.

Remark. First we proved Hayman’s conjecture (Theorem 2 with m = 2
and l = 1) only for functions of finite order. A preprint with this result was
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widely circulated. It was then realized independently (and almost simulta-
neously) by H. H. Chen and M. L. Fang, by L. Zalcman, and by the second
author of this paper how the infinite order case can be reduced to the finite
order case (Step 2 in the proof of Theorem 2). We are grateful to L. Yang
for telling us about H. H. Chen’s and M. L. Fang’s result and to Y. F. Wang
for sending us a preprint of their work [4], to L. Zalcman for informing us
about his work and to D. Drasin for bringing to our attention the papers of
X. Pang [22, 23]

2 Lemmas

The proofs of the following two lemmas use some ideas of A. Weitsman [29]
(compare also [8, Proposition 2.1]).

Lemma 1 Let p > 3 be an integer and g be a transcendental meromorphic
function of order less than p − 3. Then there exists an integer n0 = n0(g)
and a sequence Rn ∈ (2pn−2, 2pn) , n ≥ n0, such that the total length of the
level curves |g(z)| = Rn in Kn := {z : |z| ≤ 2n} is at most 2pn/2.

Proof. We use the standard notations of Nevanlinna theory [9, 12, 21]. For
R > |g(0)|+ 1 (or R > 0 if g(0) =∞) and θ ∈ [0, 2π] we have

n

(
2n,

1

g −Reiθ

)
≤ N

(
2n+2,

1

g −Reiθ

)
≤ T

(
2n+2, g

)
+ log+ R+ C,

where C depends on g only. Thus

pn(R) :=
1

2π

∫ 2π

0
n

(
2n,

1

g −Reiθ

)
dθ ≤ T

(
2n+2, g

)
+ log+ R+ C. (2)

Let ln(R) be the total length of the level curves |g(z)| = R in Kn. Put
βn = 2pn and αn = 2pn−2. By the length-area principle [10, p. 18] we have∫ βn

αn

ln(R)2dR

Rpn(R)
≤ 2πarea Kn = 2π222n.

So there exists Rn ∈ (αn, βn) such that

ln(Rn)2 ≤ 1

βn − αn
Rnpn(Rn)2π222n ≤ 2pn, n ≥ n0,
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in view of (2) and the estimate

T (2n+2, g) ≤ 2(p−3)(n+2), n ≥ n0.

This proves the lemma.

Lemma 2 Let p > 3 be an integer and f be a meromorphic function of order
less than p−3. Given ε > 0 there exists C > 0 such that for every component
B of the set E := {z : |f ′(z)| < C−1|z|−2p} we have

diam f(B) < ε. (3)

Here diamS denotes the (Euclidean) diameter of a set S ⊂ C.
Proof. Apply Lemma 1 to the function g = 1/f ′. Note that f and g have

the same order because f and f ′ have the same order by a result of J. M.
Whittaker [30]. Increase if necessary n0 from Lemma 1 such that

∞∑
n=n0

2np/2 + 2π2n

Rn

<
ε

2
(4)

and hence ∞∑
n=n0

2n+1

Rn

<
ε

2
. (5)

For n ≥ n0 we set
Vn = {z : |z| < 2n, |g(z)| > Rn}

and

V =
∞⋃

n=n0

Vn.

Note that the boundary ∂V consists of some arcs of the level curves |g(z)| =
Rn which are in Kn and some arcs of the circles |z| = 2n on which we have
Rn ≤ |g(z)| ≤ Rn+1. Applying Lemma 1 and (4) we obtain

∫
∂V
|g(z)|−1|dz| ≤

∞∑
n=n0

2np/2 + 2π2n

Rn

<
ε

2
. (6)

We may assume without loss of generality that there are no poles of g on
|z| = 2n0. Choose C > 1 such that the set E = {z : |g(z)| > C|z|2p} does
not meet the circle |z| = 2n0 and such that for all components B of this set
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contained in {z : |z| < 2n0} the condition (3) is satisfied. Let us show that
E ∩ {z : |z| ≥ 2n0} ⊂ V . If z ∈ E and |z| ≥ 2n0 , we can find n > n0 such
that 2n−1 ≤ |z| < 2n. Then we have |g(z)| > C|z|2p ≥ |z|2p ≥ 22p(n−1) ≥ Rn

so that z ∈ Vn ⊂ V .
Now let D be a component of V which contains a component B of E such

that B ⊂ {z : |z| > 2n0}. If z1 and z2 are in B, connect them by the straight
line segment L. If L ⊂ D take γ = L. If L 6⊂ D consider a segment [a, b] ⊂ L

such that (a, b) ⊂ C\D and a, b ∈ ∂D. Replace (a, b) by a bounded arc of
∂D connecting a and b. After performing this procedure on every segment
of L\D we obtain a curve γ1 connecting z1 and z2. Delete if necessary some
parts of γ1 to obtain a simple curve γ connecting z1 and z2. The part of γ in
D consists of some segments of L. Denote by Tn the union of these segments
which lie in 2n−1 ≤ |z| ≤ 2n. Then |g(z)| ≥ Rn for z ∈ Tn and thus by (5)
and (6)

|f(z1)−f(z2)| ≤
∫
γ
|g(z)|−1|dz| < ε

2
+
∞∑

n=n0

∫
Tn
|g(z)|−1|dz| ≤ ε

2
+
∞∑

n=n0

2n+1

Rn

< ε.

3 Proof of Theorem 1

Let a be an asymptotic value and U be an indirect singularity over a such
that U(R0) contains no critical points and 0 /∈ U(R0) for some R0 > 0.
Without loss of generality we may assume that a = 0. We are going to
construct inductively the following objects:

• a sequence of asymptotic values an, R0/2 > |a1| > |a2| > . . . ,

• a sequence of disjoint simply-connected domains Gn ⊂ U(R0/2) such
that f is univalent in Gn and Dn := f(Gn) is a disk, 0 /∈ Dn,

• a sequence of asymptotic curves Γn ⊂ Gn such that f(Γn) is a straight
line segment and f(z)→ an as z →∞, z ∈ Γn.

Let us show how to construct an, Gn, and Γn assuming that ak, Gk, and
Γk are already constructed for k < n.

First choose a positive number Rn < |an−1| (if n = 1 we take R1 < R0/2)
such that U(Rn)∩Gk = ∅ for k < n. This is possible because 0 /∈ Dk = f(Gk).
Then we take a point zn ∈ U(Rn) satisfying f(zn) = 0. The existence of
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such a point follows from the definition of an indirect singularity. We have
f ′(zn) 6= 0 by assumption. So there exists a branch ϕ of f−1 of the form

ϕ(w) = zn +
∞∑
m=1

cmw
m.

Denote by rn the radius of convergence of this series.
We claim that

0 < rn < Rn. (7)

To prove the right inequality, suppose that rn ≥ Rn. Then A := ϕ({w :
|w| < Rn}) is a component of f−1({w : |w| < Rn}), containing the point
zn ∈ U(Rn). This implies that A = U(Rn) because U(Rn) is connected.
Hence f is univalent in U(Rn), which is a contradiction. This proves (7).

Let an = rne
isn be a singular point of ϕ. We have |an| = rn < Rn <

|an−1| < . . . < R0/2.
Consider the disk

Dn =
{
w :

∣∣∣∣w − 2rn
3
eisn

∣∣∣∣ < rn
3

}
.

Then ϕ is holomorphic on Dn\{an} and 0 /∈ Dn. Set Gn = ϕ(Dn). Then Gn

is a simply-connected domain in C bounded by one analytic curve tending
to infinity in both directions. Indeed, if Gn is bounded, then z∗ := ϕ(an) ∈
C. If z∗ is an ordinary point, then ϕ has no singular point at an. But
z∗ ∈ U(Rn) ⊂ U(r0) cannot be a critical point by assumption. Moreover,
Gn ⊂ U(Rn) so that in particular Gn∩Gk = ∅ for k < n. Finally we consider
the segment

Ln =
{
w = teisn :

2

3
rn ≤ t < rn

}
⊂ Dn

and put Γn = ϕ(Ln). This completes our construction.
Now we want to estimate the rate of convergence f(z)→ an, z ∈ Γn. Let

qn ∈ ∂Gn, xn = |qn|. For x > xn we denote by θn(x) the angular measure of
{θ : xeiθ ∈ Gn}. Then

∞∑
n=1

θn(x) ≤ 2π (8)

because the Gn are disjoint. Now, by the Ahlfors distortion theorem [21, p.
98] applied to the conformal map f : Gn → Dn, we have

log
1

|f(z)− an|
≥ π

∫ |z|
xn

dx

xθn(x)
− Cn, z ∈ Γn, (9)
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where the Cn are constants. We want to conclude from here that for all n
with at most 4p+ 2 exceptions

lim inf
z→∞,z∈Γn

|f(z)− an||z|2p+1 = 0. (10)

(Here p > 3 is a natural number such that the order of f is less than p− 3.)
To prove (10) assume that |f(z)−an| > c|z|−2p−1 for K := 4p+ 3 values of n
and all large |z|, say for n = 1, 2, . . . , K and |z| ≥ x0, where x0 > max{xn :
1 ≤ n ≤ K}. Then we have by (9)

π
∫ |z|
x0

dx

xθn(x)
≤ (2p+ 1) log |z|+O(1), 1 ≤ n ≤ K. (11)

Now using Schwarz’s inequality and (11) we get(
log
|z|
x0

)2

=

(∫ |z|
x0

dx

x

)2

≤
∫ |z|
x0

dx

xθn(x)

∫ |z|
x0

θn(x)dx

x

≤
(

1

π
(2p+ 1) log |z|+O(1)

)∫ |z|
x0

θn(x)dx

x
.

Adding these inequalities for n = 1, 2, . . . , K and using (8) we obtain

K

(
log
|z|
x0

)2

≤
(
2(2p+ 1) log |z|+O(1)

)
log
|z|
x0

which is a contradiction because K = 4p+3. This proves that (10) is satisfied
except possibly for 4p + 2 values of n. Dropping those an and Γn for which
(10) is not satisfied and changing the enumeration of the remaining an and
Γn we may assume that (10) is satisfied for all n.

Next we prove that for every n there exists a sequence zn,j ∈ Γn, zn,j →∞,
such that

|f ′(zn,j)| ≤ |zn,j|−2p−1. (12)

Recall that f maps Γn monotonically onto a straight line segment. Thus

|f(z)− an| =
∫ ∞
z
|f ′(z)||dz|,
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where the path of integration is Γn. If we assume contrary to (12) that
|f ′(z)| > |z|−2p−1 for all z ∈ Γn with sufficiently large moduli, then we obtain

|f(z)− an| ≥
∫ ∞
z
|z|−2p−1|dz| ≥ 1

2p
|z|−2p

which contradicts (10). Hence (12) is true.
Recall that R0/2 > |a1| > |a2| > . . . and put

ε =
1

4
min{|ai − aj| : 1 ≤ i < j ≤ 2p}.

Then ε < R0/8. Apply Lemma 2 using the value of ε just specified. Lemma
2 gives some value C > 0. For every n choose a point z∗n = zn,j(n) using the
relation (12) such that the following conditions are satisfied for 1 ≤ n ≤ 2p:

|z∗n| ≥ C (13)

and
|f(z∗n)− an| < ε.

Then
|f(z∗n)− f(z∗k)| > 2ε, 1 ≤ n < k ≤ 2p, (14)

and

|f(z∗n)|+ ε <
3

4
R0, 1 ≤ n ≤ 2p. (15)

Using (12) and (13) we get

|f ′(z∗n)| < C−1|z∗n|−2p, 1 ≤ n ≤ 2p.

Let Bn be the component of the set {z : |f ′(z)| < C−1|z|−2p} containing z∗n.
Applying Lemma 2 we conclude that

diam f(Bn) < ε, 1 ≤ n ≤ 2p. (16)

By (15) we have f(Bn) ⊂ {w : |w| < 3R0/4}. But U(R0) is a component of
f−1({w : |w| < R0}) and U(R0) and Bn have a point z∗n in common. So we
conclude that

Bn ⊂ U(R0), 1 ≤ n ≤ 2p. (17)

Comparing (14) and (16) we conclude that the Bn are disjoint.
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The function

u(z) = − log |f ′(z)| − 2p log |z| − logC

is subharmonic in U(R0) because U(R0) does not contain critical points of f
by assumption. Also 0 /∈ U(R0) by assumption. Now the Bn are components
of the set {z ∈ U(R0) : u(z) > 0} and we have u(z) = 0 for z ∈ ∂Bn by (17).

Now a standard application of the subharmonic version of the Denjoy–
Carleman–Ahlfors Theorem [14, Theorem 8.9] shows that the order of u is at
least p. So the order of f ′ and hence f is at least p and we have a contradiction
which proves the theorem.

4 Proof of Theorems 2 and 3

Proof of Theorem 3. Let c ∈ C\{0} and consider the function g defined by
g(z) = z − f(z)/c. Then g has finite order because f has finite order.

We shall use some results from the iteration theory of meromorphic func-
tions. By g◦n we denote the n-th iterate of g. The largest open set where
all g◦n are defined and form a normal family is called the Fatou set of g and
denoted by F (g).

Let now ζ be a multiple zero of f . Then g(ζ) = ζ and g′(ζ) = 1. Classical
results from iteration theory (see for example [1, Theorem 6.5.4]) now imply
that there exists a component U of F (g), a so-called Leau domain, such
that ζ ∈ ∂U and g◦n → ζ locally uniformly in U . Moreover, U contains
a critical or asymptotic value of g, see for example [1, Theorem 9.3.2]. (In
[1] as well as in [3, 24] only the case of rational functions is discussed, in
which case only critical values need to be considered, but the proof extends
to the transcendental case, if we also take asymptotic values into account.)
Since f has infinitely many multiple zeros and since Leau domains related to
distinct fixed points of g are disjoint, we deduce that the set of critical and
asymptotic values of g is infinite. By Corollary 3 this is possible only if g
has infinitely many critical values. In particular, g′ has infinitely many zeros
which implies that f ′ assumes the value c infinitely often. This completes
the proof of Theorem 3.

For the proof of Theorem 2 we also need the following lemmas.
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Lemma 3 Let f be a transcendental meromorphic function. If f has only
finitely many zeros, then f (l), l ≥ 1 assumes every finite non-zero value in-
finitely often.

Lemma 3 was proved by W. K. Hayman ([11, Theorem 3] or [12, Corollary
to Theorem 3.5]).

Lemma 4 Let F be a non normal family of meromorphic functions in the
unit disk D, and −1 < k < 1. Then there exist sequences fn ∈ F, zn ∈ D
and an > 0 such that |zn| < r < 1, an → 0 and

gn(ζ) := a−kn fn(zn + anζ)→ g(ζ),

where g is a non-constant meromorphic function in the plane of order at
most 2, normal type, and the convergence is uniform on compacta in C with
respect to the spherical metric.

The case k = 0 in Lemma 4 was proved by L. Zalcman [31, 32], and the
general case by X. Pang [22, 23].

Proof of Theorem 2.
Step 1. We first prove the theorem for the case when the order of f is finite.
If f has finitely many zeros then the conclusion follows from Lemma 3. If
f has infinitely many zeros then h = (fm)(l−1) has infinitely many multiple
zeros and we apply Theorem 3 to h.
Step 2. Now we reduce the general case to the case of finite order, using
Lemma 4. We use the notation

f# =
|f ′|

1 + |f |2

for the spherical derivative.
Suppose that there exists a transcendental meromorphic function f such

that the equation (fm)(l)(z) = a has a finite set of solutions for some a 6= 0.
We may assume without loss of generality that a = 1.

Put k = l/m and define a family F consisting of all functions

fn(z) = 2−knf(2nz), 1/4 < |z| < 2, n = 1, 2, . . . .

This family cannot be normal in {z : 1/4 < |z| < 2}. For otherwise we would
have for some M > 0

M > f#
n (z) = 2(1−k)nf#(2nz) > f#(2nz), 1/2 < |z| < 1

14



from which follows that∫ ∫
|x+iy|<r

(f#(x+ iy))2 dxdy = O(r2), r→∞,

so the order of f is finite which contradicts Step 1.

Now notice that (fmn )(l)(z) = (fm)(l)(2nz), so (hm)(l)(z) 6= 1 for every
h ∈ F .

Now we choose a disk in the annulus {z : 1/4 < |z| < 2} such that F is
not normal in this disk, apply Lemma 4 to F with k = l/m and obtain a
non-constant meromorphic function g of order at most 2 which also has the
property (gm)(l)(z) 6= 1, z ∈ C. This contradicts Step 1. So Theorem 2 is
proved.

Here is another application of Theorem 3.

If P is a non-constant polynomial and if f is a transcendental meromor-
phic function of finite order, then P (f)f ′ assumes every finite non-zero value
infinitely often. This was proved by E. Mues [20, Satz 1] for the case that
f is entire, but without the restriction on the order. To see this we choose
a zero a of P , with the property that f has infinitely many a-points if such
a zero exists. We define Q(z) =

∫ z
a P (t)dt and proceed as in the proof of

Theorem 2, Step 1, with h = Q(f).

Now we will show that Theorem 3 fails for functions of infinite order.

Example. Define

f(z) = z + a
∫ z

0
exp(b exp t− t)dt,

where a and b are complex numbers with the properties:

1 + ab = 0 and 1 + a exp b = 0. (18)

Such numbers are easy to find by taking any solution of exp(z) = z as b and
putting a = −1/b. From the first condition (18) follows that f(2πi) = 0.
(Use the substitution w = exp t and residues to evaluate the integral). So f
has period 2πi. From the second condition (18) follows that f ′(0) = 0. By
periodicity f has multiple zeros at the points 2πik. On the other hand f ′

omits the value 1.
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5 Proof of Theorem 4

We start with the following simple

Proposition Let f be a meromorphic function with infinitely many zeros
and no asymptotic values in C∗ = C\{0}. Then there are infinitely many
critical points lying over C∗.

Proof. We have infinitely many branches of f−1 of the form

qk(w) = ϕk(w
1/pk) = zk +

∞∑
n=1

cnw
n/pk ,

where pk are some integers, zk are the zeros of f and ϕk are univalent. If
the radius of convergence rk of the series ϕk is infinite then ϕk is linear as a
univalent holomorphic function in C. So all rk are finite which means that the
branches qk have singularities in C∗. These singularities are algebraic branch
points and only finitely many qk’s may share one such singularity. Thus the
total number of critical points of f over C∗ is infinite. This completes the
proof of the Proposition.

We will also use a theorem of F. Iversen [18, 21], which states that if a
transcendental meromorphic function takes some value a ∈ C̄ finitely many
times then a is an asymptotic value.

Proof of Theorem 4. To prove (a) assume that f ′ has finitely many zeros.
Then all but a finite set of critical points lie over ∞. From Corollary 2 we
conclude that there is at most one asymptotic value a ∈ C̄. If a = ∞ or
there is no asymptotic value at all, then f has infinitely many zeros and we
apply the Proposition to get a contradiction. If a is finite we may assume
without loss of generality that a = 0. Then f has infinitely many poles by
Iversen’s theorem and we apply the Proposition to 1/f .

To prove (b) we assume that f ′/f has finitely many zeros. This means
that all except finitely many critical points lie over 0 and ∞. By Corollary 2
there are no asymptotic values. So we have infinitely many zeros by Iversen’s
theorem and the Proposition gives a contradiction.

To prove (c) we assume that f ′/f has finitely many zeros. Then all
critical values lie over 0 and by Corollary 2 and Iversen’s theorem the only
asymptotic value is infinity. Again there are infinitely many zeros and the
application of the Proposition finishes the proof.
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