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To find the sum

we write it as

where ' means summation over all non-zero integers, positive and negative.
Then we apply residue theorem to the function

f(2) =2z"wcotmz

in the large rectangle {z + 1y : —M < o < M, —M < y < M}, where
M € Z +1/2 is a half-integer. It is easy to see that the integral over the
boundary of this rectangle tends to 0 as M — oo, so the sum of the residues
at all integers is 0. Snce the residue of 272" cot Tz at a non-zero integer n
equals n~?™, we obtained the formula
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To obtain this residue one needs Taylor coefficients of cot. Let us begin with
a simpler function and define B,, by the formula
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One can find these B,, reccursively:
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We obtain:
B():l, 31:—1/2, 82:1/6, B'g,:(), B4:—1/30,

and so on. The pattern is not clearly visible, but it is evident that these
numbers are rational. Let us prove that all odd numbered B,,, except B; are
ZEro.

This means that the function

z +z
e —1 2

is even. This is a rare example when this property is not seen immediately,
but anyway, this is a routine verification. We will later see that By, switch
signs. They are called Bernoulli numbers.
We will express Taylor coefficients of cot z in terms of Bernoulli numbers.
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We found that B; = —1/2, so the term with z cancels, and the sum of even
powers remains. Substituting 7z we obtain:

=~ BQn
Tzeotmz = Y (—1)" (27m2)*".
o (2n)!

The residue in (1) is the constant term of 2727z cot 72. So we obtain
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As the right hand side is evidently positive, we conclude that Bernoulli num-
bers have a sign switch.

Bernoulli numbers occur in many places in mathematics, see, for example
https://mathoverflow.net /questions/61252.
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