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1. Dirichlet problem for a cylinder

This problem describes time-independent solutions of the wave and heat
equations in a cylinder.

A cylinder is described in cylindrical coordinates by inequalities

0 ≤ r ≤ L, 0 ≤ z ≤ H,

where L is the radius and H is the height. We want to solve the Laplace
equation in cylindrical coordinates

urr +
1

r
ur +

1

r2
uθθ + uzz = 0, (1)

under the boundary conditions

u(r, θ, 0) = f(r, θ), (2)

u(r, θ,H) = g(r, θ), (3)

u(L, θ, z) = h(θ, z). (4)

where f, g, h are some given functions. Besides, we have the periodicity
conditions

u(r,−π, z) = u(r, π, z), uθ(r,−π, z) = uθ(r, π, z), (5)

which come from the nature of cylindrical coordinates.
As always, the problem is split into 3 problems:

a) f = g = 0,
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b) g = h = 0,

c) f = h = 0,

and the complete solution is the sum of three solutions of a),b),c).
The first step is common for all three problems: separation of the vari-

ables. We look for solutions of the form u(r, θ, z) = R(r)Θ(θ)Z(z). Plugging
this form, we obtain

R′′ΘZ +
1

r
R′ΘZ +

1

r2
RΘ′′Z +RΘZ ′′ = 0.

The general rule is to separate those variables first for which the boundary
conditions are homogeneous. So for all problems a), b), c) we separate θ part
first, since the conditions (5) are homogeneous. So we rewrite our equation
as

r2
R′′

R
+ r

R′

R
+ r2

Z ′′

Z
= −Θ′′

Θ
.

Both sides must be constant, say equal to µ, and for θ we obtain

Θ′′ + µ2Θ = 0

with periodic boundary conditions. As we know, this implies that µ2 = m2

where m is a non-negative integer, and to each positive m correspond two
eigenfunctions, which can we written in the real form

Θm(θ) = am cos(mθ) + bm sin(mθ), m = 0, 1, 2, . . . ,

or in the complex form

Θm = cme
imθ, −∞ < m < +∞.

(To m = 0 corresponds only one eigenfunction, a constant).
The remaining equation is

r2
R′′

R
+ r

R′

R
+ r2

Z ′′

Z
−m2 = 0,

and we separate r from z:

R′′

R
+

1

r

R′

R
− m2

r2
= −Z

′′

Z
. (6)
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In problem a),

the boundary conditions for z are homogeneous, (they come from (2), (3)
with f = g = 0), so we consider the z part first. We have

Z ′′ + λZ = 0, Z(0) = Z(H) = 0.

This is a familiar problem: the eigenvalues ares

λn = π2n2/H2, (7)

and eigenfunctions are

Zn(z) = sin
(
πnz

H

)
, n = 1, 2, 3, . . . .

The remaining equation in r then becomes

R′′

R
+

1

r

R′

R
− m2

r2
− λn = 0,

or

r2
R′′

R
+ r

R′

R
−
(
λnr

2 +m2
)
R = 0.

This looks like the equation reducible to the Bessel equation, except the
wrong sign of λn (compare with eigenvalue problem for a disk). So it is
reduced to Bessel by the change of the variable

R(r) = y
(√
−λn r

)
= y

(
i
πnr

H

)
, i =

√
−1, (8)

where y satisfies the Bessel equation

x2y′′ + xy′ + (x2 −m2)y = 0. (9)

The general solution of this last equation is

y(x) = aJm(x) + bYm(x),

where Jm and Ym are Bessel functions of the first and second kind, and since
our function R is supposed to be bounded, while Ym(x) → −∞ as x → 0,
we must take b = 0.
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So we obtain:

Rm,n(r) = Jm

(
i
πnr

H

)
.

Combining Rm,n,Θn, Zm, we obtain a series for problem a):

u(r, θ, z) =
∑
m,n

cm,nJm

(
i
πnr

H

)
eimθ sin

πnz

H
.

To satisfy the boundary condition (4) we plug r = L, and obtain a double
Fourier series

h(θ, z) =
∑
m,n

cm,nJm(iπnL/H)eimθ sin(πnz/H).

and Fourier formulas give us

cm,n =
1

πHJm(iπnL/H)

∫ π

−π

∫ H

0
h(θ, z)e−imθ sin(πnz/H)dzdθ,

where we used the normalization factors∫ π

−π
|eimθ|2dθ = 2π, and

∫ H

0
sin2(πnz/H)dz =

H

2
.

This solves problem a).
Remark. Functions i−νJν(ix) are sometimes called modified Bessel func-

tions and the standard notation for them is Iν . The power of i multiple is
added to make them real on the positive ray.

Problems b), and c).

We return to (6). This time the problem in r is homogeneous, so we
consider the r-part first. Denoting the common value of the RHS and LHS
of (6) by −λ2m we obtain the r-part:

r2R′′ + rR′ + (λ2mr
2 −m2)R = 0, (10)

with the boundary condition

R(L) = 0, (11)

which comes from (4) with h = 0. This is reduced to Bessel equation by
setting R = y(λmr), so that y will satisfy (9), and taking into account that
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R(0) must be finite, we obtain R = Jm(λmr). Now the boundary condition
(11) implies

λm,k = xm,k/L,

where xm,k is the k-th zero of Jm. Notice that λm,k are all real since Bessel
functions of order > −1 have only real roots, and without loss of generality
we may consider only positive zeros since only λ2m enters our equation (10).

Once λm,k is found, it remains to solve the z part in (6). We have

Z ′′ − λ2m,kZ = 0,

whose general solution can be written as

Z(z) = a cosh(λm,kz) + b sinh(λm,kz).

So the general solution satisfying homogeneous boundary conditions for the
cases b), c) has the form

um,k(r, θ, z) =
∑
m,k

Jm(λm,kr)e
imθ (am,k cosh(λm,kz) + bm,k sinh(λm,kz)) .

To satisfy the boundary conditions (3), (4), we plug z = 0 or z = H and use
Fourier-Bessel formulas.

For example, for problem c), the boundary condition at z = 0 is zero, so
we set am,k = 0, and obtain

g(r, θ) =
∑
m,k

bm,kJm(xm,kr/L)eimθ sinh (xm,kH/L) ,

and Fourier formulas give

bm,k =
1

πL2Jm+1(xm,k)2 sinh(xm,kH/L)

∫ π

−π

∫ L

0
g(r, θ)Jm(xm,kr/L)e−imθrdrdθ.

Notice that we integrate rdr because Bessel functions are orthogonal with
weight r, and we used the formula for the square norm∫ L

0
J2
m(xm,kr/L)rdr =

L2

2
Jm+1(xm,k),

which is formula (29) in the handout “Bessel functions”.

2. Eigenvalue problem for Laplace equation in a cylinder
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To solve heat of wave equation in a cylinder, we need the following eigen-
value problem

∆u+ λ2u = 0,

with some boundary conditions. (I denoted the eigenvalue by λ2 for conve-
nience of some further formulas). Let us take for example,

u(x) = 0 on the boundary of the cylinder.

In cylindrical coordinates this becomes

urr +
1

r
ur +

1

r2
uθθ + uzz + λ2u = 0,

u(L, θ, z) = 0, −π ≤ θ ≤ π, 0 ≤ z ≤ H,

u(r, θ, 0) = u(r, θ,H) = 0, 0 ≤ r ≤ L, −π ≤ θ ≤ π.

plus the periodicity condition (5) which comes from the nature of cylindrical
coordinates.

As always, the first step is separation of variables, and plugging u = RΘZ
we obtain

R′′ΘZ +
1

r
R′ΘZ +

1

r2
RΘ′′Z +RΘZ ′′ + λ2RΘZ = 0.

Separate θ first:

r2
R′′

R
+ r

R′

R
+ r2

Z ′′

Z
+ λ2r2 = −Θ′′

Θ
. (12)

We conclude that the separation constant must be of the form m2, where m
is a non-negative integer, and eigenfunctions are

Θ±m(θ) = e±imθ, m = 0, 1, 2, . . . .

Replacing Θ′′/Θ in (12) by −m2 and dividing on r2 we obtain

R′′

R
+

1

r

R′

R
− m2

r2
+ λ2 = −Z

′′

Z
,

so the common value of the RHS and LHS is a constant, and we obtain a
familiar problem for z variable, with boundary conditions Z(0) = Z(H) = 0,
from which we conclude that this separation constant must be π2n2/H2 and

Zn(z) = sin
πnz

H
, n = 1, 2, 3, . . . .
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Now for the r part we obtain

r2R′′ + rR′ +

((
λ2 − π2n2

H2

)
r2 −m2

)
R = 0, (13)

and this is reduced to the Bessel equation by the change of the variable

R(r) = f(
√
λ2 − π2n2/H2 r).

Then as always, we conclude that the solution must be a scaled Bessel func-
tion Jm since the second linear independent solution of the Bessel equation is
not bounded near 0. Moreover, we know that all roots of the Bessel function
are real, so we must have

λ2 ≥ π2n2/H2. (14)

If equality holds in (14), then (13) is an Euler equation whose linearly inde-
pendent solutions are R(r) = rm and R(r) = r−m, when m = 0 the second
solution is log r. In any case, the second solution is infinite at 0, so it must
be rejected. But then the solution R(r) = rm cannot satisfy the boundary
condition R(L) = 0. Thus we must have a strict inequality in (14).

Thus
R(r) = Jm(

√
λ2 − π2n2/H2 r),

and the boundary condition R(L) = 0 implies

λ2m,n,k = (xm,k/L)2 + (πn/H)2. (15)

So we found eigenvalues, and eigenfunctions are

um,n,k(r, θ, z) = eimθ sin
πiz

H
Jm(λm,n,kr).

Here m is any integer (positive or negative), while n and k are positive
integers.

Exercise. Radial eigenvalue problem for Laplace equation in a ball.

Consider the eigenvalue problem

∆u+ λ2u = 0

7



in a ball |x| ≤ L in 3-space, with zero boundary condition. Here one has to
use spherical coordinate’s (r, φ, θ) which will be fully discussed later. But let
us restrict the problem to eigenfunctions which depend on the radius r = |x|
only. Find all such eigenfunctions and corresponding eigenvalues.

For radial functions in spherical coordinates, the expression of the Lapla-
cian in the following

∆ru = urr +
2

r
ur.

Here subscript r in ∆r means that we drop all terms which involve differen-
tiation with respect to φ, θ.

So we want to solve the equation

y′′ +
2

r
y′ + λ2y = 0, (16)

with boundary conditions that y(0) is finite, and

y(L) = 0.

I suggest two ways of solving this problem.

1. Try to find a simple change of the variable which reduces this equation to
a Bessel equation.

2. If you cannot do this, try to solve it using power series. The associated
Euler equation is

r2y′′ + 2ry′ = 0,

where we dropped the term λ2r2. The corresponding characteristic equation
is

ρ2 + ρ = 0,

so solutions of Euler’s equation are 1 and 1/r. This suggests that a solution
of (16) which is bounded at 0 must be of the form

y(r) =
∞∑
n=0

anr
n.

Plug this form, determine the coefficients an explicitly, and recognize the
resulting function y, it turns out to be elementary. This permits you to find
eigenvalues and eigenfunctions.

Once you have an explicit solution of (16), you can return to step 1, and
find a simple change of the variable which reduces it to Bessel equation.
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