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1. Eigenvalue problem for the Laplacian in a disk.

Consider the eigenvalue problem for the Laplace operator1

∆u+ λ2u = 0

with zero boundary conditions in the disk described in polar coordinates by
the inequality x2 + y2 < L2. So the boundary conditions are

u(L, θ) = 0, 0 ≤ θ ≤ 2π,

and the function θ 7→ u(r, θ) is smooth, 2π-periodic.
Expressing the Laplacian in polar coordinates we obtain

∆u = urr +
1

r
ur +

1

r2
uθθ + λ2u = 0.

Looking for solutions of the form u(r, θ) = R(r)Θ(θ), we obtain

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ + λ2RΘ = 0.

We divide on RΘ, multiply on r2 and move the term with θ to the RHS:

r2
R′′

R
+ r

R

R
+ λ2r2 = −Θ′′

Θ
.

Since the LHS depends only on r and the LHS only on θ, they are both
eual to the same constant. Then for θ-part we obtain the familiar eigenvalue

1I denoted the eigenvalue by λ2 because I know in advance that it is going to be positive,
this convention will simplify some formulas.
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problem, with periodic boundary conditions, and conclude that this constant
(the common value of the LHS and RHS of (4)) must be a square of an integer,
say n2, and the eigenfunctions of the θ-problem are

cos(nθ), n = 0, 1, . . . and sin(nθ), n = 1, 2, . . . .

The r-part now becomes

r2R′′ + rR′ + (λ2r2 − n2)R = 0. (1)

We can easily remove the dependence on λ by the change of the variables

R(r) = f(λr), x = λr. (2)

Our equation becomes

x2f ′′ + xf ′ + (x2 − ν2)f = 0, where ν = n, (3)

which is the standard form of the Bessel equation. The reason we intro-
duced a new letter ν is that we are going to study it not only for integer
values of ν, for further applications. This number ν is called the order of
the Bessel equation.

This equation cannot be solved in elementary functions (unless ν =
1/2+an integer), so we have to study its solutions by themselves, using the
equation.

2. Bessel functions

Equation (3) differs from Euler’s equation by the term x2 in parentheses.
This suggests that we may look for a solution of the form

f(x) = xb
∞∑
0

ajx
j =

∞∑
0

ajx
j+b, a0 6= 0. (4)

where xb is a solution of the Euler equation.
By differentiating this expression for f twice, we obtain

xf ′(x) =
∞∑
0

(j + b)ajx
j+b, (5)

x2f ′′(x) =
∞∑
0

(j + b− 1)(j + b)ajx
j+b, (6)
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and we transform the term x2f(x) as

x2f(x) =
∞∑
k=0

akx
k+b+2 =

∞∑
j=2

aj−2x
j+b, (7)

where we changed the summation index k to j = k + 2. Plugging (4), (5),
(6), (7) into (3) we must obtain an identity, that is the coefficient at xj+b for
each j ≥ 0 must be zero.

This gives:

for j = 0 : (b2 − ν2)a0 = 0, (8)

for j = 1 : ((b+ 1)2 − ν2)a1 = 0, (9)

for j ≥ 2 : ((b+ j)2 − ν2)aj + aj−2 = 0.. (10)

Since we assume a0 6= 0 we obtain from (8) b = ±ν, as expected from
comparison with Euler’s equation (equation b2 − ν2 = 0 is the characteristic
equation of this Euler equation). One can always satisfy (9) by setting a1 = 0,
which we do. Then (10) gives us a two-step recurrence relation:

aj = − aj−2
(j + b)2 − ν2

= − aj−2
j(j + 2b)

, j = 2, 3, . . . , (11)

where we used b2 = ν2.
When ν is real (we are only concern with this case), we may suppose

without loss of generality that ν ≥ 0, since only ν2 enters our equation (3).
Then, there can be a problem with (11) if b is a negative integer, the case we
leave aside for a while. If b = ν ≥ 0, recurrent relation can be solved, and
we obtain

a2 = − a0
2(2 + 2ν)

, a4 =
a0

2 · 4(2 + 2ν)(4 + 2ν)
,

and so on.
Then,

a2k =
(−1)ka0

2 · 4 · . . . · (2k)(2 + 2ν)(4 + 2ν) . . . (2k + 2ν)

=
(−1)ka0

22kk!(1 + ν)(2 + ν) . . . (k + ν)
,

and
a2k+1 = 0, k = 0, 1, 2, . . . .
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At this point, it is convenient to use Gamma function (see the handout “Some
useful integrals”). We choose

a0 =
1

2νΓ(1 + ν)

and use the formula

Γ(k + 1 + ν) = (k + ν)(k + ν − 1) . . . (1 + ν)Γ(1 + ν).

This permits to write the solution that we obtained as

f(x) =
∞∑
0

(−1)k

k!Γ(k + ν + 1)

(
x

2

)2k+ν

= xν
∞∑
k=0

(−1)kx2k

22k+νk!Γ(k + ν + 1)
=: Jν(x).

(12)
This function is called the Bessel function (of the first kind) of order ν.
One can easily show that the radius of convergence of the power series at the
end of (12) is infinite, so the power series converges for all complex x.

When x→ 0, and ν is not an integer, we have

Jν(x) ∼ xν x→ 0, (13)

so Jν and J−ν are linearly independent. We have J0(0) = 1, and Jν(0) = 0
when ν > 0. Since for non-integer ν, Jν and J−ν satisfy the same differential
equation (3), and are linearly independent. we conclude that the general
solution of this equation is

aJν(x) + bJ−ν(x).

Now let us suppose now that ν = n is a positive integer, and try to define
J−n by the same formula (12). I recall that Γ equals ∞ at negative integers,
so since it stands in the denominators of the formula (12) all terms with
k < n vanish. For k ≥ n we have Γ(k − n + 1) = (k − n)!, so changing the
summation index to j = k − n we obtain:

J−n =
∞∑
k=n

(−1)k

k!(k − n)!

(
x

2

)2k−n
=
∞∑
j=0

(−1)j+n

j!(j + n)!

(
x

2

)2j+n

= (−1)nJn(x).

So Jn = (−1)nJ−n and for integer ν we obtained only one linearly indepen-
dent solution of the Bessel equation.
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The second one is usually taken to be the Bessel function of the second
kind which is defined first for non-integer ν by the formula

Yν(x) :=
cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
, (14)

and then for integer n as the limit

Yn(x) := lim
ν→n

Yν(x).

One can show that the limit exists (it is an indeterminate expression of the
form 0/0 when ν is integer in (14)), and has these properties:

Yn(x) ∼ −(n− 1)!

π

(
x

2

)−n
, x→ 0, n ≥ 1, (15)

and

Yn(x) ∼ 2

π
log

x

2
, x→ 0. (16)

For this course, it will be only important that Yn(x)→ −∞ as x→ 0.
To conclude this part, we state that the general solution of the Bessel

equation of integer order ν = n is

aJn(x) + bYn(x).

3. Properties of Bessel functions.

The following properties are obtained by simple manipulations with the
series: (

x−νJν(x)
)′

= −x−νJν+1(x), (17)

(xνJν(x))′ = xνJν−1(x), (18)

xJ ′ν(x)− νJν(x) = −xJν+1(x), (19)

xJ ′ν(x) + νJν(x) = xJν−1(x), (20)

xJν−1(x) + xJν+1(x) = 2νJν(x), (21)

Jν−1(x)− Jν+1(x) = 2J ′ν(x). (22)

(See p. 133 of the book for proofs).
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As it was already mentioned, Bessel’s functions of half-integer order are
elementary. We begin with J−1/2, use the properties of Γ and slightly rear-
range the terms (see p. 134 of the book):

J−1/2(x) =

√
2

πx

∞∑
0

(−1)kx2k

(2k)!
=

√
2

πx
cosx.

Similarly,

J1/2(x) =

√
2

πx
sinx.

Then formula (21) shows that Jk+1/2 is an elementary function for all integers
k.

Exercise. Compute J3/2 and J5/2.

Even more important property is the following formula:

∞∑
−∞

Jn(x)zn = exp
(
x

2

(
z − 1

z

))
. (23)

This is also obtained by direct manipulation with power series (see p. 134-135
of the book). Plugging z = eit we obtain from (23)

eix sin t =
∞∑
−∞

Jn(x)eint,

so we obtained the Fourier expansion of the function t 7→ exp(ix sin t), where
x is a parameter! Applying Fourier’s formulas to this expansion, we obtain

Jn(x) =
1

2π

∫ π

−π
eix sin(t)−intdt.

Since the LHS is real for real x, we can take the real part of the RHS:

Jn(x) =
1

2π

∫ π

−π
cos(x sin(t)− nt)dt =

1

π

∫ π

0
cos(x sin(t)− nt)dt,

where we used the fact that cos is even and sin is odd.
This gives a new representation of the Bessel function of integer order,

which can be taken as an alternative definition.
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Exercise. Derive from (23) the identity

Jn(x+ y) =
∞∑

k=−∞
Jk(x)Jn−k(y).

4. Zeros and asymptotics.

Power series gives a very good approximation of Jν(x) for small x, but it
is not useful when x is large.

Exercise. How many terms of the Taylor series you need to use to compute
e−10 with error 1 percent?

A very good approximation for large x is given by the formula

Jν(x) =

√
2

πx
cos

(
x− πν

2
− π

4

)
+ Eν(x), x > 1, (24)

where |Eν(x)| ≤ cνx
−3/4, x > 1, and cν is some constant depending on ν.

When ν = ±1/2, this formula gives an exact equality, that is c±1/2 = 0.
This approximation is obtained by substituting f(x) = x−1/2g(x) to the

Bessel equation, which gives

g′′(x) + g(x) +
1/4− ν2

x2
g(x) = 0.

In this equation, the last summand is small when x is large, so it is reasonable
to expect that solutions will be close to solutions of g′′+g = 0, and the general
solution of this last equation is a cos(x+b). It remains to determine constants
a and b, to approximate the specific solution Jν of the original equation.

Notice that this approximation (24) is actually very good, even when x
is not too large, as you can see from the graphs (Handout: Plots of some
Bessel functions). So for all practical purposes, the power series (3) together
with approximation (24) are sufficient.

Approximation (24) permits also to approximate the positive zeros of
Bessel functions, that is solutions of Jµ(x) = 0. All except possibly one of
them are close to the zeros of cos(z − πν/2 − π/4). So we have a sequence
of zeros x1 < x2 < . . . → +∞ on the positive ray, which are given by the
approximate formula

xk ≈ π(k +m(ν) + ν/2 + 1/4),
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where m(ν) is an integer depending on ν.

Exercise. Guess what this integer m(ν) is, exactly, by inspecting the graphs
in the handount “Plots of Bessel functions”.

Here is a little table of smallest positive zeros of Jn for 0 ≤ n ≤ 4:

n = 0: 2.404825558, 5.520078110, 8.653727913, 11.79153444, 14.93091771,
n = 1: 3.831705970, 7.015586670, 10.17346814, 13.32369194, 16.47063005,
n = 2: 5.135622302, 8.417244140, 11.61984117, 14.79595178, 17.95981949,
n = 3: 6.380161896, 9.761023130, 13.01520072, 16.22346616, 19.40941523,
n = 4: 7.588342435, 11.06470949, 14.37253667, 17.61596605, 20.82693296,
n = 5: 8.771483816, 12.33860420, 15.70017408, 18.98013388, 22.21779990,

An important properties of zeros is that they are interlacent: between
any two positive zeros of Jn there is exactly one zero of Jn+1. But on the
first interval (0, xn,1) there is no zero of Jn+1.

5. A singular Sturm-Liouville problem.

Recall section 1, where we arrived at the problem of solving the equation

r2R′′ + rR′ + (λ2r2 − n2)R = 0. (25)

with the boundary condition R(L) = 0. In general, one needs two boundary
conditions for a second order equation; the second one will be discussed
shortly.

Dividing on r, we can rewrite the equation in the Sturm-Liouville form:

(rR′)′ − n2

r
R + λ2rR = 0, (26)

so we have a formally self-adjoint differential operator

L(R) = (rR′)′ − n2

r
R

and the weight function w(r) = r. The problem is singular: the coefficient
at R′′ is equal to zero at r = 0, and the function n2/r equals ∞ at 0. So the
theory of regular Sturm-Liouville problems does not apply.

8



Now we know how to obtain general solution of (25): by changing R(r) =
f(λr) we obtain Bessel’s equation (3) for f , so the general solution of (25) is

aJn(λr) + bYn(λr). (27)

Now, recalling what our solutions describe (section 1) we conclude that the
value R(0) must be finite, and this plays the role of the second boundary
condition, since Yµ tends to −∞ as x→ 0, while Jn(0) is finite when n ≥ 0,
we conclude that b = 0 in (27). Then the boundary condition on the right
end reads:

Jn(λL) = 0, (28)

and we conclude that λL must be one of the zeros of Jn.
It turns out that for ν > −1 all solutions of Jν(x) = 0 are real, and all

except possibly x = 0 are simple.
Since x−νJν is an even function (see (3), solutions of (28) are summetric

with respect to the origin. So the only positive solutions are

λν,k = xν,k/L

where xν,k is the sequence of positive zeros of Jν described in the previous
section.

So we obtain a sequence of eigenvalues λ2n,k and a sequence of eigen-
functions R(r) = φn,k(r) = Jn(λn,kr) of the problem (25) with boundary
conditions: R(0+) is finite and R(L) = 0.

It turns out that this system of eigenfunctions is a complete orthogonal
system with weight w(r) = r:

Theorem. Suppose that ν ≥ 0, L > 0 and w(r) = r, and Let xν,k we the
sequence of positive zeros of the Bessel function Jν. Then functions φν,k(r) =
Jν(xν,kr/L), k = 1, 2, . . . , form a complete w-orthogonal systems with

‖φν,k‖2w =
L2

2
J2
ν+1(xν,k). (29)

This means that every function g ∈ L2
w(0, L) can be expanded into a

Fourier–Bessel series:

f(r) =
∞∑
k=1

cν,kφν,k,
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cν,k =
1

‖φν,k‖2
∫ L

0
f(r)φν,k(r)rdr.

As always, we skip the proof of completeness. But orthogonality and
formula (29) are not hard to check (Lemma 5.4 on p. 147 of the book).

6. Completion of the investigation of the eigenvalue problem for
the disk.

Now we can finish the study of the eigenvalue problem for the Laplacian
in the disk which began in section 1. We know now that equation (1) has
non-zero solutions satisfying boundary conditions (that R(0+) is finite and
R(L) = 0) if and only if λ = λn,k = xn,k/L where xn,k is the k-th positive
zero of Jn. So eigenvalues are

λ2n,k = x2n,k/L
2, (30)

and eigenfunctions are

Jn(λn,kr)(a cos(nθ) + b sin(nθ)). (31)

So, for example, if we want to decribe the sound of a circular membrane (a
tamburin) of radius L, this amounts to solving the wave equation

utt = c2∆u

with boundary conditions u(L, θ, t) = 0. Separating time from space vari-
ables we obtain u(r, θ, t) = T (t)v(r, θ),

T ′′

c2T
=

∆v

v
= −λ2.

The space part that we just solved tells us that and the solution is a linear
combination of oscillations

u(r, θ, t) =
∑
n,k

cos(cλn,kt)Jn(λn,kr)(an,k cos(nθ) + bn,k sin(nθ) (32)

+ sin(cλn,kt)Jn(λn,kr)(a
′
n,k cos(nθ) + b′n,k sin(nθ) (33)

Here cλn,k = cxn,k/L are frequencies, and (31) are modes corresponding to
each frequency.

To solve the initial value problem, say with

u(r, θ, 0) = f(r, θ) and ut(r, θ, 0) = g(r, θ)
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we plug t = 0 and expand f into a double Fourier–Bessel series:

f(r, θ) =
∑
n,k

Jn(xn,kr/L)(an,k cos(nθ) + bn,k sin(nθ))

Fourier–Bessel formulas and (29) give us the coefficients:

an,k =
2

πL2J2
n+1(xn,k)

∫ π

−π

∫ L

0
f(r, θ)Jn(xn,kr/L) cos(nθ)rdrdθ,

and similarly for bn,k.
To satisfy the second boundary condition ut(r, θ, 0) = g(r, θ), one differ-

entiates in t, plugs t = 0 and used Fourier–Bessel formulas for g, to determine
a′n,k and b′n,k.

Example. Find the smallest and second smallest frequencies of oscilla-
tion of a membrane with clamped edge, of radius 10 cm, if the speed of wave
propagations in this membrane is c =200 m/sec.

The frequency of oscillation with mode

Jn(xn,kr/L) cos(nθ)

is
cλn,k
2π

=
cxn,k
2πL

=
2000

2π
xn,k.

From the table at the end of section 4, the two smallest values of xn,k are
x0,1 ≈ 2.404 and x1,1 ≈ 3.83. So the frequencies are ≈ 765Hz and 1219Hz.

11


