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and if o =w, then f(z)

ON QUASIANALYTICITY AND GENERAL DISTRIBUTIONS

(Lecture 1)
A. Beurling

Let y be a given compact Jordan arc, rectifiable or not. Let
C(y) denote the set of complex-valued functions continuous on y. Let
D be a simply connected domain having 7 as a boundary arc. We intro-

duce the sequences of real numbers
O=a <a <a,< -+ <a <+ ¢ 30
(¢} 1 2 n

0< Xl < X2 < - e < kn < eee

Let
s *n%ha
o= ) —= (finite or infinite).
=1. n

Theorem 1:
Let f£(z) € C(y), and let [fn(z)}i be a sequence of functions

analytic in D, continuous on 7, and satisfying:

X .
(1) lfn(z)l.s e 1. in D

(ii) . lfn(z)-f(z)|.S e-anv on ¥-.

Then. the following two conclusions hold:

(a) If (z)

0O on a set Eoc;y of positive harmonic measure(l)

1]

O on 7.

1) . : ,
( )The harmonic measure ®w(z) of E_  does not vanish (identi-
cally) in D. °

)



(pb) If o <o, then‘corre3ponding'to each subarc 70(;7 there
exists a function f and a sequence [fn} satisfying the stated

hypotheses, such that f(z) = 0 on 7, while f(z) #0 on 7.

Remark: If the sequence [an is bounded, then o =, and the con-
clusion (a) follows from the classical theorem of F. and M. Riesz con-
cerning functions analytic and bounded inside the unit circle. (Theorem

1 is invariant under conformal mapping.)

A partial summation (Abel summation) gives

L)

s an %n 1 _ (

o= ) —_— - - /
n=1 n n+l

in the sense that both series are either convergent and equal, or

divergentn let

*
a = min(a ,\ )
n
* S *x(7 1\
o = }, & | - i
n ;
n=1 n n+l/

’ * *
Observe that a < a 41

lema: 0 =w <=> 7 =w.

*
Proof: That o =« implies o =« is obvious. To prove the converse,

let
5 = 1i A |
o ety Phath
x QA
® = lim sup an/l . I 2o
n -»>o . 58
’ 76/



*
Then & = min(d,1). There are two cases:

. * *
1) 8>0=>5 >0=>0 =ou since the tail of the series

¥ *
o a -a
n n-l

(o) - § s
n= n n+l N n=N+1 n

*
2) 5 =0=>g = a for all n sufficiently large

= %

»Itn

=]

{

o if 0 =ow.

Proof of Theorem 1:

Part a): A conformal mapping takes D onto the strip 0<y<1
(z = x+iy), carrying 7 onto the entire real axis and E, onto a set
E of positive linear measure. By hypothesis |fn(z)| < e)"n on the
éfrip, and f(x) =0 on E. Without restriction we shall assume
|£(x)| <1 throughout the real axis.

We construct the Laplace transform.

o0}
F(s) = [ f£(x)e ™ %ax , s =0+ it ,
X

[¢]

where x> O is to be chosen later in a suitable way. F(s) is ana-

lytic and bounded in Re(s} > 1.



Our aim is to show F(s) = 0. 1In the integral for
F(s), we shall replace f(x) by the analytic function fn(z), com-

mitting an error. One finds

[F(1-1t)| < e“aLn + ”w fn'(x)e"x(l'it)dxl .

X
o

For t > 2Xn, we shall now estimate the integral on the right. To do
so, we deform the contour of integration to two rectilinear parts «

and B as shown:

” o E ol

&
A &

Y
=

Since fn(z) is bounded in the strip,
[o0]
| =1+].
x, a B

(Apply Cauchy's theorem to the rectangle with vertices xo, xo+i, R+i,

R;  then let R -w.)



We find

o . . -2
”l = |f fn(x+i)e~(x+1)(l-lt)dxl <e n ,
B b ¢

o
since t > 2Xn. In order to estimate the integral over Q, we recall

that |f(x)| <1 and note that for n 2> N sufficiently large

-8, on E
n

)eitZ|

log Ifn( z < ( 0 elsewhere on real axis

-Xn on line y=.1.

It is easy to construct a function harmonic in the strip a.nd_ having
these boundary values. If w(z) is the harmonic measure of E , such

a function is
-a o(z) - )\.n y .

Therefore, by the harmonic majorant principle (that is, by the fact

that log | | is subharmonic), one concludes

)eitZ

log Ifn(z | < -8 o(z) - MY n>N.

Now choose xo to be & point of density of. E; . that'is, .a.point for
which

a)(xo,y) -1 as y -0 .

By the maximum principle



inf  [o(x ,y) +y]l =96, 0<6<1,
0<y<1 °©

where 6 depends only on E and X - Thus

*
- - - (04
a w(z) 2y < -6 a on s

so that
*
1 it(x + iy) -6a.

Ul <T le(x, +iy)e  © | <e 7, n>N.
a o)

For n>N and t > 2.Xn we have proved

* *
-8 -\ -6a —Gan
IF(l-it)ISe e By B < 3e
This gives
® dt o Znn dt
J log |[F(2-it)| =5 = ¥ [ log |F(1-1t)| =5
2\ t n=N 2\ t
N n
® *
S-%Za )“—l-—xl + const = - »
n=N o n+l

by hypothesis. Thus F(s) = 0, which implies f(x)

0 for x>x .
- 0O

The proof for x < J-{o is similar.

Part b): Again it is sufficient to prove the assertion for a par-
ticular geometric configuration. We choose D +to be the strip O0<y<l1,
7 to be the real axis, and 70 to be the positive real axis.

Let wu(s) be harmonic in the right half-plane and have boundary

values



. , 2
u(it) >a +log (1+t%) for A, < | t] Sh -

Such a function u(s) exists because the hypothesis ¢ <o ensures
that the appropriate Poisson integral converges. Let v(s) be a har-
monic conjugate of u, and form

e-u(s)-lv(s) .

F(s) =

Define f(x) as the inverse Laplace transform of F(s):

1 Ieo sX
£(x) =z ) F(s)e™™ ds .
P 1)
Because
* 2
J |F(o+it)|“at < const. for o > o,
-0

it follows from a theorem of Paley-Wiener that f(x) = 0 for x > O.
However, f£(x) # 0.

Now let the sequence [fn(z)] be defined by

joo
_ 1 sz
fn(z) = 5 f F(s)e™ as .

-iA

n

Then for z =x+iy (0<y<1),
yA.
oY -yt n ] A
2l <3 [ S av <& | & s<e .
;ln 1+t < 1+t

Furthermore, for z = x real,



-\ .
20,0l <& IFGs)la <e

n
This completes the proof of Theorem 1.

For each X\ > 0, we now define the class S(\,7,D) of functions
£(z) analytic in D, continuous on Y, and satisfying the inequality

l£(z)] < Ry in D .

Each S(A,7,D) is a subclass of C(7) consisting of what we shall call

semi-analytic functions.

Given f(z) € c(y), 1let

inf - "f-g“ - e-A(X,f;?';D)
g € 8(x;7,D)

b4

where | || is the uniform norm on y. The non-negative number

A(X,f,y,D) will be called the approximation index of f with respect

to the class S(A,y,D). Certainly A »» as A —»w, since each
f € C(y) may be uniformly approximated by a polynomial. Further prop-

erties are:
1) A(M,f,7,D) increases moﬁotbnically as A increases.
2) 70C7) D.OCD > A(X,f,YO,DO) 2 A(l)f)ny)'
3) A()":f+g;7:D) > min[A(X,f,y,D)', ,A(l;g}7}D)] - l°g 2.

. A A
l") A()")f‘g;y)D) _>_ mn[A(E,f,nD), A(’é‘:g:7)D)] - const.

5) Conformal invariance.



The Jordan arc ¥ has a positive direction. It is necessary to
L+ -
distinguish domains D and D  which lie, respectively, on the posi-

tive and the negative sides of 7, &as-shown:

Let a(A) (0 <A <w) be a given function which increases monotonically
+

to ». We introduce the classes C(-)(y,a(X)) of functions f € C(y)

. + _

for which there exists a D (or D) and positive constants kl, k2,

k5 such that

+
(-
- A(\,1£,7,D )) >k a(kex) - k5 .
+ -
Such a class C or C ‘is an algebra.
Theorem 1 described a class of functions f e C(y) which can vanish
throughout a set 70c_7 of positive harmonic measure only if identically

' zero on y. Any subclass of C(y) with this Property will be called

quasi-analytic (QA) with respect to harmonic measure.

Theorem 2:

" ,
C(-)(y,a(k)) is QA with respect to harmonic measure if and only

ir

;o) _
7 X



ON QUASIANALYTICITY AND GENERAL DISTRIBUTIONS
A. Beurling Lecture 2

(Notes Prepared by P. L. Duren)

Applications to Harmonic Analysis

1) Let u(t) be a bounded measure on - o <t <ew, and consider

its Fourier-Stieltjes transform

£(x) = f e qu(t) .
Define

fwld_u(t)l , A>0
A
s(\) =

A
J lap(t)] , r<o.

Corollary 2.1: Assume

. -1
(i) { lgg_féﬁlgﬁ =-w (or [ =-w)

(ii) f(x) = 0 on a set E of positive measure.

Then f(x) =0 and u =

I
(@)

Proof: ILet 7y ©be any finite interval such that 7 (VE is of positive

measure. Construct the domain D as follows:



0
Assume [ 1o sé)» . = -w. (The proof in the other case is similar.)
1 A

-~

For A >0, define
> itz |
g(2) =/ e auy)
- 00
Then, for 0<y <1,
o A A
|2, (x + iy)| <eflull <™,
assuming, as we may, |/ <1. Also
|£(x)-2, (x)| <s(n),
so by the definition of the approximation index
e.-A(x)

<s(),  a(h) = AQ,z,,D) .

Thus A(M) > -log s(A), and



Theorem 2 may now be applied: f(x) =0 on v, hence on the entire real

axis. This implies p = O.

2) The preceding result may be generalized to Euclidean space Rp
of p dimensions. Let u(g) be a positive bounded Borel measure on RP,

and consider the Hilbert space Lﬁ with square norm

lel® = 1 12(6)1? aue)
. R
e
Let Lu denote the set of Fourier transforms

F(x) = J % g(e)aule) , fe Lﬁ
RP .

7\
2
We shall give a condition under which Lﬁ is QA with respect to posi-

tive measure. \
For ¢ € R° on the unit sphere (le] = 1) and any number A > 1,
let ng denote the half-space consisting of all point's x € R?  whose

projection x-t£ > . (See diagram below.)




Let

s(h,e) = [  au(n) ,

EY

and let
[o2]
ar
w(e) = | 1og a6) & .
1 A ) !
Since f is a bounded measure, - o <m(t¢) < const.

Corollary 2.2: Let §l, §2, e gp e RF be a set of linearly indepen-

dent unit vectors, and suppose m(gk) =-w, k=1,2, ... , p. Then

I~
: 2
H

Lu is QA with respect to positive measure; that is, if F(x) €

vanishes on a set EC Rp of positive measure, then F(x) =0 1in Rp

Proof: For ¢ = gk any one of the given vectors, let

on’g = [x|x=xo+-t§ y -0 <t <o}

be any line parallel to &, and consider the restriction ¢(t)= F(xo+t§)

of F(x) to this line:

-i(xo+t§ )

o(t) =) e £(n)an(n)

%%

oy, -ix -
-16(E ), Yo qf(n)]du(n)

= f e
RP

= f e-itp dV(p) ’

-00



where the new measure v(p) is obtained by projecting the measure

-ix .m
e © £(n)au(n) on the line. By construction,
[+ <]
Flave)l </ let)lantn) < ligll /s00E) .
> B
Thus the assumption m(t¢) = - » implies that hypothesis (i) of Corollary

2.1 is fulfilled. We therefore conclude that F(x) = O on the line

L if the set ENL has positive linear measure. Here ¢ = gk
xo,vg xoyg
is any of the given linearly independent vectors, so the proof of Corol-

lary 2.2 is completed by the following:

Geometfical Lemma: Iet [gk]i be p linearly independent unit vectors

in Rp, and let E CRp be a closed set of positive measure. If the
entire line L - C E whenever the linear measure of E NL is
xoygk X ’gk

(o]
positive, then E = RF.

Theorems I and IT dealt with approximation in the uniform norm. Our
next object is to prove an analogous theorem for the P norm, 1<p <ew.
We have now to assume that 7y is a compact interval; séy 7 = [bl,b2]
on the real axis. Let 7y form one side of a rectangular domain D, as

shown below. (The theorem which follows is equally valid if D 1lies in

the lower half-plane.)

“T £=X+L?




For each A >0, 1let- Sp(x,y,D) denote the class of functions g(z) ana-

lytic.in D and satisfying

b, 1/p
J lelx + 1y)|® ax < e,

by

Each such function must necessarily have a vertical limit

g(x) = 1lim g(x + iy)
y -0

and g(x) ¢ I¥(y).

For each f(x) € Lp(y) we define the approximation index

Apijx) = Ap()\.,f,y,D) by

-A ()
inf le-gll =e P

g € s°(%,7,D)

Theorem III1:

Let f(x) e LP(y), and suppose

(i) £(x) =C onaset EC Yy of positive measure

o A()\.) ar
(,ii) f —22—=+m .
1 A

Then f£(x) = O a.e. on 7.

O0<K<y<e.

a.e. ony ,



25992: It is sufficient to prove the theorem for p = 1, because 7y
is compact and.therefore the norm in Ll is a minorant of the norm in
I, p>1. The major task in the proof is to show that f(x) must
vanish a.e. on an interval. Once this is known, thé theorem becomes a
simple consequence of Theorem I.

Preliminary to the proof we mention a few lemmés. let D be a
domain bounded by a rectifiable Jordan curve C. A line of symmetry in
D 1is a curve which is the counter-image, under some conformal mapping
of D onto the unit disk, of a circular arc orthogonal to the unit

circle. Let @ and B be orthogonal lines of symmetry in D.

//F /\3
\o_ )

For any function f£(z) analytic in D, let

A= 1e(z)laz] 5 B=17 [g(z)]laz] ; P =S |£(z)|]dzl|
a B C

2 2 2
Lemma 1: A~ + B~ < P°/k . (Proof in Lunds Univ. Mat. Sem., Suppl., 1952.)

Corollary: Let f(z) be analytic in the rectangle -a <x <a, O0<y<b,

and suppose

a

J1e(x + iy)lax <M for O<y<b.
-a



b .
Then [ |£(x + iy)lay <M{2+ (v/(a-|x]|))].
O

Lerma 2: Let D be a bounded convex domain, and let Q& be any chord.

Then for f(z) analytic in D

C
J 12(2)| |az] s(f: |£(z)| |az] .

0

It is assumed in Theorem III (for p = 1 ) that

5 , where A()\) =Al(x,f,7,D) .

f°° Avar _
1 2

‘We may therefore select a sequence [XnJi_ such that

(2) & = A(xn)-l > /i“n .

The divergence of the integral and the monotonic character of A(\) imply

that the choice may be made such that

.
Eoa(E ) -
n=1 n n n+l

Given f e Ll(7), we may select a sequence of functions fn(z) € Sl(xn,y,D)
such that

fe-g ll <e .



We are assuming £ =0 onaset E, |E| >0 (|E| denotes measure).

Therefore
[t (ax<e ™;
E " -
so if
_1,
e = (x|x e E, |fn(x)| >e 2my
we have
_1,
le | <e 21
n =
For n, sufficiently large,
® & %‘a 1
HJ en| SZ € n<—2'|El:
n=n_ n=n

convergence of the. series being assured by the construction of (an} . Let

[}

E0=E—U e, |E0|>O.
n=n
o
Then
1
-Ean' -
e (x)] <e for xe€eE, n>n_ .
n - o -0

Now let 7y <7y be a subinterval concentric-with y and so large that
- 0

_El = Eon 70



has positive measure. Let R CD be the rectangle with base 7 _ (see
diaegram), and let aRo denote the boundary of R . Finally, let

X5 X, € El be density points; in particular,

lim o(x),y) = lim olx,,y) =1,
y -0 y -0

where o(z) is the harmonic measure of E, with respect to R -

A\% 2 =X+ La«
7~
ct - A
K,
D P D
A Y
> X
4 X, X, L
2
< [° >
< { >

Consider now the Fourier transform

X

2
F(t) = [ f(x)eitx dx .

*

We replace f(x) by the analytic function fn(z) and integrate over &

path & which forms with [xl,x2] a rectangle as shown above. We f£ind

IF(t)] <e "+ |f fn(Z)e]ltz dz|
a

10



The main difficulty of the proof is to estimate this integral over a.
We shall eventuélly factor the integrand into the product of a bounded

function and a function bounded in mean.

Let G(z,t) be the Green's function of R, and let

K(z,t) = é% -52— G(z,¢) (inner normal derivative) .

By virtue of the harmonic majorant principle,

log I (2)] < J K(z,¢) log |2, (£)] lat]
oR
o
< [ +f +]
: 1 .
.I‘o El El
= - ' = - . -
where Fo BRO 70 and El 7 El In an obvious way we may con

struct functions hn(z) and gn(z) analytic in R such that

log |n (2)] =/ ; 1log lgn(Z)l = [
r_ E!

1
1
" 2%
Because lfnl <e on El’ we have
-an
[ < - afz) , n>n
E -0
1
Putting this together,
%h

(*) log |£ (2)] < log |n (z)] + 1og lg (2)] - 5 o(z) , n2>n .



For fixed ¢ € L. K(z,t) is harmonic for z € R and vanishes

on 70. From this we conclude that

K(zzgz '
Y Scl<°° ifgef‘o, Zeqa.,
For z € @, we therefore have

log |h (2] 5"13’1{ log |£ (£)] lat]
o

(
<lirl ey 1ogUi‘- 1{ |2 (¢)] |d§|)) )

where the continuous form of the geometric-arithmetic mean inequality has

been used. But by the corollary to Lemma 1,

A
[le Ol lael <cye ™,

o
50
log lhn(z)lscjykn, z €Q, nzno.
On the other hand,
1 on T
o
|gn| = 1 on El
]
lfnl on El s
s0



[ lg ()] laz| <¢, -
aRO n

This implies, by Lemma 2,
élgn(z)l laz| <3¢, .

Exponentiation of (*) gives for real t

l-' a w
2 n e-tyl

itZl < Ihe
n

Ifne lgn| ’ z€R , n>n

l.
<l | exe (Ch - 580 -ty],
<le | exp{-C_yr -Leaw t>2C, A
~ '®n 3 'n 2 ’
But because xl' and x, are points of density,

inf
z e

[C3y+%w]=9>0 .

Consequently,
6 *
- . -0Oa n>n ,
[ £, (2)e' 2] <e " lg (2)) |zl , °
a a t>2C, A\
—_ 3 n
N ‘
where & = min {an;kn}. _Hence for large n and t
* *
—an -Oan -8'a
{F(t)l <e "+(3¢)e "<e ° (6r >0) ,

13



so the divergence of the sum (recall the lemma of Lecture 1)

implies

foo' log |F(t)|at

= -0 .
1 t2

But F(t) is an entire function of exponential type, so F(t) = 0. We

therefore conclude

f(x) =0 a.e. on x Sx<x, .
With the knowledge that f vanishes a.e. on an interval, the the-

orem may now be deduced from Theorem I. Let the continuous function

t'pe(x) 2 0 have support in (-€,e), and suppose f(pe(x)d.x =1. Let

Ye = [bl + e, b, - €], and consider the convolution

fe(x) =fxo = / f(t)@e(x~t)dt , xey_ .

- Q0

+€, x_ - €].

Then fe(x) is continuous on 7, and vanishes on [x -

1
The functions

fn,e(z) =f *x9_ =/ f(z-t)¢€(t)dt

-00

are analytic in the rectangle [bl +e<x <b2 -€ 0<y<C(C}, and

for €
L N

1k



. A -
lfn’e(x)l' < (const)e n ‘fe(x)—fn e(vx)l < (const)e >

2

n

The constants mey depend on €, but not on n. By Theorem I,
fe(x)EO, xXey,_, €e>0.

But 1im fe(x) = f(x) a.e. on 7, so Theorem III is proved.
€ -0

Application (p = 2): It is well known that each function
ped n 2
£(z) = 3. c 2z €H (1z] <1)
n=o

has for almost every 6 a radial limit

eiG) _ 19)

1im f(re
r -1

£(

which belongs to L2(0,21t) and does not vanish on a set of positive
measure unless f(z) = 0. By means ofb Theorem I1I, we shall now prove
that a larger subclass of L2(0,21t), boundary values of analytic func-
tions or not, has this quasi-analytic property.

et f(x) € L2(0,2n) and let
«© ]
£(x) NZ c, e'™ vpe its formal Fourier series.

Since Z |cn|2 <w, we may define

15



Z |c|2 ) n>o0
v>n V|
Sn= _ .
2]/ |
Zlcl I n<o.

Corollary 3.1: Let f(x) e L2(0,2n), and suppose

(1) £f(x) =0 onaset EcC[0,2t] of positive measure,

o Jog s -
(ii) Z 2n = - o (or Z = -o)
n=1 n -0

Then f(x) =0 a.e. on [0,2n].

o0

Proof: Assume ) = -w, the other case being similar. Define the
n=1

approximating functions

o iv(x+iy)
fn(x+iy)=chev v, -1<y<o.

-00

These functions fn(z) are analytic in D, as shown:

A4

] Y 21T

16



For -1<y<Qo,

21 n
2 - 2 2
J lfn(x+iy)|2dx =Yl " e Y < ef© e,
0 - 00

SO

an(x+iy)“ <e .

(We assume ||f]l < 1.) Furthermore,

o 1/2
lle(x)-2, ()l =[ 2 Icv|2] =8,

ntl

50

e-A(n) <8_, where A(n) = A2(n,f;7;D)'

Thus A(n) >-log S, soby hypothesis (ii)

b

0 A(
nz=:l _—gl -t

n

Since A(\) 1is an increasing function, the divergence of this sum is

5

equivalent to the divergence of the integral

oo

A(h)ar
f (_2 = to,
1 A

so Theorem III may be invoked to conclude £f(x) = 0 a.e. in 0<x<2x.

17



ON QUASIANALXTICITY AND GENERAL DISTRIBUTIONS
A. Beurling Iecture 3

(Notes Prepared by P. L. Duren)

The following theorem is classical:

Theorem A: Iet f(z) be an entire function of exponential type,

and suppose

j'm log’ |£(x)[dax < o
. 2 )
w00 l+ x

Then

j log~ |f(x)]dx S o

0 1+x2

unless f = 0. A simple consequence is

Theorem B: Iet W(x) .be a bounded measure on -» < x <, and let
A ® it
H(t) =j e % qu(x) (= <t <)
=00

.be its Fourier-Stieltjes transform. If {i(t) has compact .support, then
® 1is absolutely continuous, and -g—i = £(x) 1s an entire function of ex-

ponential type satisfying
«©

- 4 dx
j dx' 2

14+ x

unless u = O.



OQur Corollary 2.1 is similar to Theorem B, but the hypothesis that
ﬁ have compact suppoft is replaced by the much weaker assumption that
it vanish on a set of positive measure. In Theorem IV we shall relax
also the hypothesis that pM(x) be a bounded measure.

Given a measure u(E), bounded or not, let
©o
(X _ eo(x,p.) =j e—lx-E,l lan(e) |
=00

The integral may diverge, but if it converges at one point x then

o,
o(x) <= for all x. Indeed, differentiation under the integral sign

glves the Lipschitz condition

lo(x) - o(xg)| < Ix - x| -

Theorem IV: Iet u(x) be an arbitrary measure on - < x <,

and assume

o 4
(1) _-ﬂ__(%dx@

- 1 + x
' o (*)
(i1) B =0 on same interval .
Then
© -
(111) g x ‘1>2<> o
o 1 4+ x

unless M = O.

(%)

For unbounded H the integral defining ﬁ may diverge, but a cer-
tain summation process may still be applied to giye meaning to (i1).
This will be made precise in part 2 of the proof.

2



,l) We assume first that p is bounded, and later reduce the unbounded
case to the bounded case.
If p 1is bounded, it is harmless to assume Hu" < 1. We further

suppose without loss of generality that

W(t) =0 on -1<t<1.

If, in fact, up(x) 1s replaced by ul(x),= p(ax + b), we may choose
a, b such that ﬁl =0 on [-1,1], while the convergence or diver-

gence of the integrals involving ¢ will not be affected. The function

F(z) = E%I -ii 'Q%é%l v(z = x + iy)

is analytic in y > O and in Y < O. We shall prove .that if (111) di-
-verges and {1 = O .on ‘[—l,l], then F=0 and p =0 follows.

Another expression for F(z) is
l 0
= I f(t)e™™ at , y>0
(o]
1 A
-5 ] f(t)e ™% at , y<O0.
Now let k(t) be any smooth function such that
0, t S »—l

k(t) =
1, t >+ .



Recalling that p(t) = 0 in [-1,1], we may write

w -
F(z) = 5= | k(e)(e)e™ at y>0.
-0
We introduce the kernel
1 2 itz
K(z)=-2—ﬂ—f k(t)e™ " at , y>o0,
-0
in terms of which
[+ )
F(z) = [ K(z-¢)au(e) , y>0.
-00

A particular sequence of functions kn(t) will now be chosen.

Let

where (2n)!! = 2+4<6---(2n) and (2n+1)tt = 1:3:5..+(2n+l).. By a

standard formula of elementary calculus,

1
-{ Qn(t)dt =1 .

Now let kn(t),=0 for t<-1, =1 for t>1, and

t
kn-(t) = ‘{ Qn(t)dt s Al<t < 1.



The ot Legendre polynomial Pn(t) of the interval [-1,1] may be

expressed by Rodrigues' formula

P (t) = (1) & (1) .

ot nt at®

Also

1 2
TR ()]Ta = S
-1
For each fixed z we shall now estimate the kernels
1 [~ itz
Kn(z) = 5 / kn(t)e dt (y > 0)
-00

for z = x+ti. Trivially

IKn(x+i)| <1,

but for large |x| we can do better. ‘Integration by parts (n+l)

times yields

1 .n
1 1 d -t
Ik (x+1)] < o -:{ ldtn Q le™ at

C n
|x|n+l 2" n! (C = some const.)

1A

Stirling's formuls therefore gives

|k (x+1)] < ce™, |x|] > 2n .



For convenience, let £(x) =-0(x); then £(x) > O because

lull <1. We note that

_ _Hx)
)t se T 2 )l el <22
80
. 4(x)
I laste) <e 2
| x-¢| <£§x‘)'
For each n we have
F(x+i) = _.i K (x+i-t) du(e) = et | if—élz * |xet | éz_(zg
)
| P(x+1)] <e 2

% | x-t] éf(—;‘ll .

£y

If we now choose n = then #/2 > 2n, so

|F(x+1)| <e +Ce <Ce

[F(xt1)| <ce [07(x) = o(x)].

Hence -the assumption (iii) = « o implies

_dx
1+x

= .- ,

] log |F(x+1)]



and since F(x+iy) is bounded in the half-plane y > 1, it vanishes
identically there. Thus F(z) = 0 in y > 0. Similarly, F(z) =0

in the lower half-plane. This proves the theorem for bounded measures.

2) The assumption that u 1is bounded will now be replaced by

(1) ;o) g
-00 l1+x

n

+
The Lipschitz condition |o”(x)-o (xo)l 5’|x-xo| shows

x0+0+(xo)
f o (x)dx > %[c+(xo)]2 .

X
0

. - +
Hence the convergence of (i) implies [o (xo)/xo]2 -0 as IE

that is,
o' (x) = o(x) (x »m) .
Thus
P el < @9 o)
x-1
and, in particular,
A (e) = emelxl-ttx g (e > 0)

- ==QO0.

is well defined for real t. We shall say, by definition, that 7

vanishes on an open interval o if ,ﬁe.——)O .88 € -0 uniformly on

each closed subinterval of .



J

Given a finite open interval w, let I‘w ot denote .the set of

continuous functions #£(x) satisfying

.-0+(x)

le(x)] < 2 T=0 off w.

According to a result in Malliavin's lectures, we have:

+
Lemma: If ¢ (x) e Lip 1 satisfies (1), then for every ® the set

I' 4+ contains at least one f # 0.
w,0

Iet 1 =0 on o= (a,b), and let wlC[a.+80, b-5 ] (50 > 0)

be a closed subinterval. For f el =T + Wwe find
® @0

ntl 0 (n) n+l .
I ole el < =—— J Jal < =,
n-1 l+n n-l 1+n
so the measure f(x) du(x) is bounded. As e —0,
£(x) e‘elxldu(x) > f(x) dau(x) " (strong convergence).

-Therefore,

oo

I oeet™ e - LS Heot) b o)as

-0

itx

- [ £(x)e” " au(x) as € -0 .

_ . _
On the other hand, because f = 0 off o,



lim ,fuo £(s-t) ﬁe(s)ds =0, lt] <s_ .

€ 50 «o
Putting the two together, we see that the bounded measure £(x) du(x)
has a Fourier-Stieltjes transform equal to zero on each interval
(-5,8), 0<5d <®,. Furthermore, assuming (as we may) [2] <1, we
easily find c(x,fdu) < o(x,du), so the convergence .of (1) and the
divergence of (iii) are undisturbed. Part 1 of the proof therefore
shows f(x)du(x) = 0. But, by definition, ? has compact support, so
f 1is an entire function (of exponential type), which may be assumed

to have no real zeros. This completes the proof of Theorem IV.

Apglications 2

1) Theorem IV may be used to prove old and new gap theorems,
because the hypotheses will be fulfilled, in particular, if u(x) is

bounded .and has sufficiently lacunary support. Specifically,

Corollary 4.1: Iet u(x) ‘be a bounded messure.which vanigshes through-

-out the disjoint intervals [xn, x + zn] (n=1, 2, ...), where

- e}

o zi/xffmo Let § = 0 on some interval. Then u = 0.
n=1

‘Proof: Assume without loss of generality |ul] <1l. Then o(x) =

07(x) < 0. It follows from the definition of o that

o(x) = - distance (x,8) .,



wvhere S is the support of u. Thus we conclude from Theorem IV

that @ = O because

x +ln £2
n
i o(x) % diverges if ), —g diverges.
*n x *n

2) Coxisider now a torus T -consisting of equivalence classes
of points x = _(x_l,xe) congruent (mod 2x). It is known that for all

integers n, and n, the characters

Jnx _ ei(lnlxl * n%p ’ n=(n,n),
17 2

. form .a -complete orthonormal set of functions in the Hilbert space
I?(\T). -The set is no longer complete if a single character is removed.
. Nevertheless, we shall give a general condition under which a proper
| ‘subset of the characters is complete in 'L2(T-(n) , Where w is an
.arbitrarily small open set.

Iet §i and ¢ 5 be .any fixed pair of linearly independent vec-

-

‘tors, and let [e—n}l 5 [6n}°i be sequences of positive mumbers such

that

Iet - Sl denote the union.of all infinite strips orthogonalvto §l and
meeting the ray x = tg; in the disjoint segments (rn,(l+en)rh).
-Similarly, let 82 ‘be the union of the strips meeting x = vt§2 orthog-

-onally in the disjoint segments (pn,(l+5_n)pn)-. Set ’S=SlUS_é_ ‘(gee diagram).

10
f



X,

Corollary 4.2: For each open set wCT, . the functions elBX (n e 8)

span L2( Tew).

Proof: Let f£(x) e .L2(T) be =0 a.e.on o, and suppose
S Z a, einx’ Wwhere a =0 for neS. It mstbe shown that
£=0 on T.

Let q;e(x) e ¢ vanish outside the circle x| <e. Then

1
?eNZCnenx’ Zlcn| <o .
and the convolution

B inx inx
fo=fx9 =)ace  =)be ",

mn zlbnl <o

‘Let @, be the set of a1l x € w whose distance ._frdm the boundary is
< €. Because f =0 on o, f'e =0 on o, - Furthermore, for
X = -xo + -tgl -on any line parallel to gl we may write

11



in.x it(n-¢ 1)

rlx +tt) =21 e e
* it
=J e av(r) 2
=00

.where v(r) = 0 on the intervals r,<r<r +er . Inview of the
gssumption 2 ei = o, Corollary 4.l may now be invoked to show that
fe('xo + tt 1) = 0 on any line whose intersection with ®_ contains an
_interval of positive length. Thus fe(x) = 0 throughout a strip of

. positive width. Since each line parallel to 52 meets this strip in
an interval of positive length, the same argument (using Y, 5- = «)
shows fe(x) vanishes everywhere. Ietting € — 0, we conclude

£(x) = 0 a.e.

-Remarks If the slope of gl is irrational, then the characters
17X (n e Sl) alone .span L2(T-m), because on the torus a line with
this slope is everywhere dense. These spplications are of some inter-

‘est in connection with results of Arens and Helson-Lowdenslager.

12



Lectures 4 and 5 A. BEURLING

QUAST-ANALYTICITY AND GENERAL DISTRIBUTTIONS

1. Distributions

If X is a locally compact space, we may formon X a vector
space J%' consisting of continuous numerical functions with compact
support and with a topology of the kind introduced by L. Schwartz.

The distributions will by definition be elements of the dual space J%f.
Even if X is compact a localization principle for the distribution
will require the ex1stence in Jt, of functions vanishing outside

sets
given compact /<:.X The topology of J4; does therefore not allow
the exlstence -of both localizable distributions and quasi-analytic
properties. This is the reason why the two notions are connected. We
also want to point out that considerable advantages are to be gained
by making Jﬁ: an algebra under point-wise multiplication.

The notion of distribution to be considered in the following
lectures is based on ideas Previously set forth in the work of
L. Schwartz! (concerning the topology) and in two papers by the
speakere.(concerning the algebras A, and the harmonic analysis).

The developmeﬁt of the theory for Euclidean spaces and its application
to analytic.fﬁhcfions wiil also require some elemehtarygthough.essen—

tial lemmas, ﬁhich will be stated and proved at the end of these nofes.

lTheorie des Distributions, T, 1T, Hermann, Paris.
2Scand. Congr. 1938, Harmonic Analysis Conf., Nancy, 1947.



We begin with a general definition valid on locally compact and
sigma-compact Abelian groups. Let G be such a group and G its
dual. Denote by x elements € G and by & elements € 8 Iet the
Haar measures dx and d¢ on G and a respectively be so normal-
ized with respect to the character-function (denoted eigx) that the
Fourier constant is 1. On '(\} we introduce ﬁnctions o(t¢) subject to

two conditions, the first being

A
o(t) 1is conmtinuous on G ,

(o) A
0 = o(0) <ofttm) <o) +oln) , E,m eG .

Let Aa) be the set of ﬁmctions on G -sidth a representation
o(x) = [ $<g)ei§x_ a

where €>(§)e‘”(§) e pl(é). Define
loll = 118 )18 g

The subadditive prbperty, of ® implies that A ~ with norm floll is
a Banach“'a]gebra under pointwise miltiplication and we shall have
lowll < lloll l¥ll. conversely, if ® ié continuous, the préceding in-
equality -implies al(t+) < w(g),+-w(q). ‘On replacing ® by Mw,

A = pos. parameter, we obtain-a family of algebras A).,m -with norms
A af
loll, = S19(e)] M8 g .

2



We observe' that A <X\, implies AlleAxew’ ||cp||xl < ||q>||x2 Now let

‘ﬂ-w = ‘ﬁw(G) be defined as the set of all functions with compact sup-
. . 3 . s > - d

port contained in XQ 0 AM) By definition, .flftn is linear an

closed under pointwise multiplication. At this instance we introduce

the second condition on w:

ftco possesses local units; i.e., for each compact
K € G and for each open W DK there exists a
(8)
function p € 'A_’a) such that p=1 on K, p=20

off W'.

To a compact K we associate the subset th(K) = {plo €¢4'm(G), supp .

9<K}. '

Topology of JE(D(K): A sequence {(pn]o]o_ C 04’m(K) is convergent if and
only if it is a Cauchy sequence in each A)m’ A >.0. Following Schwartz
; . . Y00

we deflne Szt‘l;ogologx on ‘/tw(G) by choosing a fixed sequence [Kn) 1

2 o, i
of compact / K cK .., G={JK, and form on JQT(G) _the inductive
n n+l 1B W
limit of the topologies on a{’& ('Kn) (which will be independent of the

choice of the Kn) . By a theorem of Dieudonné-Schwartz » €ach bounded

subset of ./tw is contained in a set of the form
B={(P|(P€|*;w(K); "q>")'5ax’ A=1,2, ...}

where K  is compact and a.}‘ are positive constants.

We recall the following property concerning the topology of ‘)4(;)
_ ,
‘& sequence (.Tn} 1 C ‘}4;(1) is convergent if and only if Tn(q>) converges
pointwise on th and if the convergence is uniform on each set of

type B.



For G = a Euclidean space, the function o(t) = log (1+]e|) will
obviously satisfy '(a) and (B) and we recognize that the spaces /& and
5! of Schwartz will coincide with .7{',0) and Jt&) respectively.

The problem to decide whether a given @ on 6 is admissible,
i.e., condition (B) satisfied, can of course not be solved unless the
structure of ’é is known. Our main objective is to solve this problem
for Euclidean spaces. The solution will also hold if G is a torus,

but this case will not be considered in detail.

Theorem I: ILet (t) satisfy (@) on RN, N> 1. Condition (B)

is then satisfied if and only if

_ a
JN(CD) = f U.)(g) |N+l <o .
le|>1 ¢

Proof: Writing ¢ =r t*, r = |t], €* € S (unit spherein RN)

N-1

we may consider d¢ as a product-measure r — dr d9(¢*) where a8

is a positive measure on S. Define

[~

p(e) = [ alre) 5, £ # o.
. r

Then

I(w) = é p(e) ao(e) .

Iet us next prove this statement: If Jg =«, then p(¢) = .on

some hemisphere S of S. If Jg <w, then p(t) 1s bounded on S.



It follows by condition (@) that for 15 Eo 5 HE, £0,

p(e, +&,) <p(e))+p(g,) ,
and for £ #£ 0,

p(f) <o=>p(A) <= , » > 0.

Define K = (¢|p(t) <w, ¢ # O}. If therefore [Ev}i

n
the same is true of each & 7( 0 of the form ¢ =Z )'v 'gv, xv.> 0,
S .

belong to K,

and K is consequently a convex cone (with vertex removed). -But a
convex cone in RN does either coincide with the whole space or it is
contained in a closed half space. Under the last mentioned alternative
P =« on some open hemisphere So. Under the first alternative p
is finite on S. The stated boundedness on S can readily be deduced
from the subadditivity of p but this point is not essential for the
follo.wing- proof.

Consider first the case JN =w. Jlet @ belong to some algebra
AM)’ say for A =1, and have compact support. Consequently, &\; is
is the restriction to RN of an entire function of exponential type.

Define for & € S

a(e) = [ 13(re)]eTE) N1
1

T_'hen

e aee) = 11301 @ <ol
.S '|T}IZ_1 :



and it follows that q <« a.e..on 5. Hence, for almost all ¢t e S,

q{t) <w and max '(p(g), p(-t)) = =. We have (formally)

lew(rg )rN"‘l} Ql‘_é_

[ 1og 18(et)] &= 10g (|B(xt)
1 1 r

H

T (olrt) + log
1

N+l) dar

5 .
r

On applying the inequality between geometrical and arithmetical means

to the first integral at the right, we find that

w A
I log |o(rt)] %Slog a(e) - plg) ,
1 r

where the right-hand side is = -« for a.a. £ e S . But £(r)=p(rt )

is the restriction to the real axis of an entire function of exponentisal
‘ A

type, bounded for real r. Hence, by the classical theorem, ®(rt)

vanishes identically in r for a.a. &. The obvious conclusion is

®=0. J == thus implies that A _ is void.
We shall show now that \74’(,1) possesses local units if Iy <= -

: set |
For this purpose let K 'be a compact/ CRN and W an open set oK.

Define K_ = (x|dist.(x,K) < €]} and choose € so small that K, < W.
Let us assume that 'there exists an f € k@ 0 A)xn and with support con-
tained in the ball |x| < e and such that [ f dx = 1. If ¢ denotes
the characteristic function of Ke’ the convolution ¢ = (ee.* £ wvill
have all the requested.properties. It is therefore sufficient to show
the existence of f. By Lemma I we conclude that there are functions
Q(r») s concave for r > 0, and with the properties:

6



lim ﬁ-%f—;:o, Q(r) >vr, [ Q(r)%<m.
lt]sw 1 r

It is a well-known fact concerning entire functions of exponential
type that there are continuous functions F(x) on each interval
[-8,58], ® >0, such that

o)

[ Filx)ax £ 0
-5

e}
| f ]i‘(x)e-ig‘x ax| Se-ﬂugl) , ¢ real,

where Q'(r) is concave and has the summability indicated. If ((JV}I:\LI

are Cartesian coordinates in RN and

) =N
k = g, F(x)ax} ,

then

N. A
f(x) =k T_r-F(xv)
1

| N
will vanish off the cube fl\ (x| lxvl <5} and [£(x)dx = 1. By the

choice of (1 ‘and by the inequality

N
. . -z adel)
‘f(ﬁ)l = |f(‘§l: §2, cve §N)| < const. e 1
we cbnclude that
N = (e )a(le |)
lell, <const. TT [ e vy v & <o, A>0
V=l



‘Wwhere mv(gv') is the restriction of & to the ¢,-axis. Hence,
f e ka) and this finishes the.proof of Theorem I.
X % X X ¥ K
The previous results gllow us to derive two importarit conclusions
in the Euclidean case: 1) If 'A:a) is not void then local units exist.

2) If @ and @, are admissible (i.e., a‘l:w ,ﬁ:m not void) then

1 2
the same is true of o = max (a)l,a)g). Consequently, if T, € ./i";) ,
- 1
] + ' -«
T, € A"”z’ then T, T, and T +T, will belong to }{;‘D

* K K K ¥

A theory of distributions ‘/’%(G) may now be developed along

familier lines. In this geheral area we shall only consider one problem.

Theorem II. Iet T belong to ,Aj(:)(G) and have compact support K.
ig.x)

.

v
let p e A’w(c) and be a local unit for K. Define T(t¢) = T(p(x)e

Then there exist constants a, b, independent of ¢ and such that

[T(e)| < 28N ¢

Proof: It follows by the definition of the Banach algebras A)«.n
that
i
lox)e ™, < lloll, ¢,
and p multiplied by a character therefore remains in JQT o’ Another

. v
conclusion 1s that the definition of T does not depend on the partic-~

ular unit for K . used.



00
If the theorem were false there would exist a sequence [gv}l

such that

v
|T(§v)| = exp (a (w(e )+1)}, 8 —+w .
- . .
Let {bv}l have the properties bv >+ ® bv/a.v — 0. Then

k(x) = vngxl( (A-b ol )-w(e )]

is finite for A > O. Define

-b_(o(g )+1) it
qJV(x)=e vy p(x)e vx, v>1.

Thus,
o ll, < lloll, exe (b afe )-wle )}

< lloll, exo (x(x)) -
This proves that [q>v)°;_ is contained in a bounded set B. Hence
.2 = - + .
const. > |T(§v)‘ exp [(&V bv)(w(ﬁv) 1)} -w

This contradiction proves the theorem.



2. Applications to Apalytic Functions

Time allows ﬁs to consider only the simplest case: functions
£(z) of oﬁe variable analytic on a disk. We recall this consequence
of the theory of Schwartz: If f£(z) 1s holomorphic in |z] <1, the
functions f(reie) converge to a distribution as rf1 if and only

if there exists a finite k such that

( ) < const. <1,
M) < o r

ﬂUr) being the maximum modulus of f on |z| = r. The correspond-

ing result for general distribution is as follows:

Theorem IIT: For r4i1, f(reie) converges to a distribution T

(belonging. to some ft(;)) if and only if

1 + +
(1) J 1og 1og M(r)ar < .
o

Proof: Assume

o
f(z)=zc,jnz'n, lz| <1 .
o

According to Cauchy,

le,l < inr Mx)

0o<r<1 "

On defining r =e™¥, h(y) = log M(e'—y ), we obtain

10



where

o(x) = inf [h(y) + xy] .
y>0

Condition (1) is equivalent to

1

(2) J log h(y)dy <w . \
(o}

convex
The function h(y) is / on (O,0) according to the three circle

theorem of Hadamard. Hence, by Lemma IT (stated later), the integral
(2) and

I ofx)

1

"ol

-

converge at the same time, and (x) is concave on (O,w). If
|£(0)| =1, which we may assume, then (0) =0, and w(x) defined
on R by the condition a(-x) = &(x) will therefore belong to a(R) ,
and hence to a(I), (I = the group of integers). We claim that

i6
f(re” ) converges in u'/l',('n(f') (I = the circle group). ILet

9(6) =% ¥n)e™ e A (r)

Then

a2n o
| 2(xe™) 9l0)as = 3 o §(-n)e®
o

11



where the series is majorized by
T 18(n) ™) - o, (= 1)

.and the stated convergence follows.
ie
Assume now that f(re” ) converges in d‘h}(r) for some wea(T).
It is readily seen that ® can be extended from I into R such that
we a(R). An application of Theorem IT to the present case yields the

.exlstence of constants a, b such that
Hence

On defining u)l(x) = a w(2x) we obtain

b
-y e h(y)
M_(e ) < :e—(;]—y e

where
h(y) = sup (@ (x)-xy) .
x>0
By Lemma IT, h(y) will satisfy (2) provided wl(x) ‘has a concave
majorant on (O,») which is summeble on (l,0) for the measure x “dx.
By Lemma I this is true. Hence (2) and (1) follow.
¥* K K X X X

12



We shall finally state the localized form of Theorem IIT and its
application to analytic continuation in one varisble. Let f(z) be
analytic in the rectangle Q = (z =x+ iy] -a<x<a, 0<y<ec},
‘and let K denote any interval [-b,b], b <a. Then f£(x + iy), y{O,
tends to a distribution Tl € ./Jc(:)(K) (for each such K) ir and only
if the following majorization condition is satisfied:

m(Y)b)
(3) |£(x + 1y)| < e° , b <x<b, 0<y<d =%,

where m(y,b) is decreasing in y and m(y,b) € L‘l(O,S), for each

b <a. Furthermore, if g 1is analytic in Q* = {z|z € Q}, then *f
and g are analytic continuations of each other .across (-a,é,) if

and only if f(x + iy) and g(x - iy) satisfy condition (3) and the
distributions Tl and T2 € J{(L(K) defined by f and g respectively
coincide (for each K). ‘Tt is to be noted that ® 1in the Preceding
statement may depend on K.

We also want to outline an application of Theorem IV (of Lecture 3)

- to analytic continuation. Iet
, - i
f =
(z) .Z; a z
be analytic in an anmulus 1-26 < |z| <1, and
e n
g(z) = 2 b z
-0

analytic for 1< |z] <1+ 25, & > 0.

13



Mx) = max  |2(2)] 1-8<r<1,
Zy = I .
M) = max  |g(z)] 1<r<1+5,
lz] = r
and suppose
145
(k) [ 10g 108" Nr)ar <= -
1-5

Assume further that .an vanishes on non-overlapping intervals

[r_xv, n, + zv], n, > 0, such that

(5)

~Ms
<°m|<“m
1
8

. : i6
If f can be analytically continued into g across one point zo=e °

then the same holds true for each point on |z| =1 and we shall have
a n & n
£(z) = g(z) =2‘r‘)nz +Zanz
. le) -00

for 1-28 < |z| < 1+28.

Proof: By the proof of Theorem II we conclude that (4) implies

the existence of a symmetric ® with Jl(a)) < o such that
(6) lals 1ol <o, azn

14



The algebra Ah) for the circle does therefore contain functions
22} oo
ind w(n
(7) 90) =T e, ™™, e [P <o
- 00 - 00

with support contained in a given interval [-€,e]. We may also

assume that c # O for all n. The functions

1 on -i6 00 n
fe(z) =5 I £(ze™7) olo) @ =3§ a c z ,
2x oo
-i6 ;
g:(2) =5/ &lze™) p0) @0 =T b_c 2",
(o] —00

Will remain holomorphic in the two annuli, and f€ can still be con-
i6

tinued analytically into g, across the point e © if e is suffi-

ciently small. ILet u be the measure on R with support on the

integers:

ui{n} = cn(an-bn) .

By virtue of (6) and (7), p is bounded and we shall have

fw e1tx du(x) = 0

=00

on some interval containing the point 60, Define as in Theorem IV

o(x) by
a(x) =-£ e 1=t aucey =_§ o~lx-xl le (a b )| .

15



Let S be the set of positive integers where a_ #0. For all n

sufficiently large

|bn|<e-nn, 5 <1 <25 .
For all v sufficiently large, we shall therefore have
- i +2.].
o(x) < -8 dist (x,8) , X € [nv, n, zv]A
This inequality together with (7) implies that

Hence, by Theorem IV, p vanishes identically and a -b. = 0 follows.

3. The Lemmas
A
In the sequel we denote by «(G) the set of functions o subject

to the condition (@) on G.

Iemma I. Iet e a(RN_), N >1, and assume JN(a)) <w . Under

these conditions there exists a function Q(r) concave for r > 0 and

such that

mx  oft) <a(x), f o(r) E<a.
lel <r 1 r

16



Proof. We shall first prove the lemma in the case N = 1. With-
out loss of genmerality, we may assume that o(-x) = w(x), because
max (o(x), w(-x)) will still belong to «a(R) and the convergence con-

dition J; <e will not be obstructed. Define a)l(x) = | 1|naic | w(e).
Eisix

We shall prove that Jl(a)l) <o . Let (a,b), a >0, be one of the

intervals that form the open set where w < a)l. Define £ = min(a,b-—a.) ,

=
)}

[x|a<x <a+§g, w(x) <}‘(D(&)} »

5
E!' = complement of E with respect to (a, a + £) ,
E*=[xlx=a+xl-x > a, X5 X € E} .

2 2

For x € E¥, w(x) > w(a) - w(—xl) - a)(xz) >_a_)_(_33,_) . Thus, E*CE"',
By definition of E¥*, |E*| > |E|. Therefore, |E'| > |E|, and we

£

conclude that IE'I > 5

. On comparing the integrals

b
dx 1 1
A = i wl(X) x_2 = w(a)(g - E) |

we f‘ind

A 6(b-a)(a + £)(a+s)
T s - <9,
ab g

17



and Jl(wl) <o follows. We next define u)2(x) as the least concave
majorant of a)l(x) over (O,0). It is easily shown that ® € a(R).
-Let again (a,b) be one of the intervals forming the set where

w, <o . Set

1 2
. wl(b) - a)l(a)
b -a
Then,
wz(x) =a)l(a.) + k(x-a) x € (a,b)
a)2(b) = wl(b) < a)l(b-x) + a)l(x) < w2(b-x) + a)l(x)

Consequently,

a)l(x) > a)2(b) - 0)2(b-x) = kx , x € (a,b)

0,(x) > o (=) , x>a.
Thus,

@, (x) > max (o, (a), kx) , x € (a,b)

We msy now normalize by assuming a = a)l(a) = 1, in which case we

shall have Oskfl. We find

_ ax _ /.. 1
A, =] w, 2-(1—k)(1-b)+klog}>,
1 b'd
b dx
Al=f @ — > (1-k) + k log b + k log k .
1 ]l x -~

18



If p<e (the Napier mimber) it follows that a>2/a>l <e on (l,b).

If b>e,

A

2 1 + k log b/e , e
Iy S T+ kilgblefklogk S a1 <€ -

Thus Jl(a)e) <o and the lemma is proved for N = 1.
If N>1 we introduce in RN an orthogonal coordinate system
and denote by wv(r) the restriction of o(t¢) to the gv—a.xis. Let

a_)v(r) denote the maximum of wv(r) and wv(-r). Then a_)v € a(R) and

The same properties hold true for

mx o (r) .
1<v<N

a)o(r)

On applying the lemma for N

1 to a)o(r) we find that there exists
a concave function Qo(r) > a)o(r) with the stated summability. For

N
each & ¢ R, Igl = r, Wwe shall have

co(g).s NQo(r).

Consequently, Q(r)v, N Qo(;') has the properties stated in the lemma.
As & prepsaration for the next lemma, we introduce these defini-

tions. For functions u)(x) continuous and >0 for x 2 0 we define

" an operator S as follows:

19



h(y) = sw = sup {(o(x)-xy) , y > 0.
x>0
As the upper envelope of a family of linear functions with negative
slope h(y) is > 0, convex and non-increasing for y > 0. For func-

tions h(y) > 0 and non-increasing for y > 0 define V(h) as

w(x) = V(h) = inf (h(y) + xy) , x > 0.
y>0

It is readily seen that VSw equals the least concave majorant of
on (0,»). Similarly, SVh is the largest convex minorant of h(y)

on (0,0).

Lemma IT. &) Let w(x) € a(R) and let h(y) = Sw. Then the

integrals
(1) I olx) %
1 b ¢
and
_ 1 .
(5) I 1log n(y) day
o

are .either both convergent or both divergent.

b) Let h(y) be >0 and non-increasing on (O,»). Then
_the previous statement concerning (4) and (5) holds for h and for

w = Vh.

20



Proof: By virtue of the proof of Lemma I we conclude that Lemma
IT is established if part a) is true for a concave . w. Without loss
of generality we assume that o has a continuous derivative ' and
that o(g ) =1 for some E,>0. Set y =w'(t ) and define

t =t(y) for 0<y< Y, by the relation '(¢) =y. Then

h(y) = 8w = w(t) - ey < oft)

-

¥y y

(e} o
] log n(y)ay </ 1og ole)dy
y y
Yo e(y) '2
<[ yallog u(e)] = [ wwg( 13
y 1

Since @ is concave and >0, Ew'(¢) <w(¢). Hence
Y

17 108 n(x)ay < [ ate) &
o 1 3

In order to prove a reversed inequality we recall that (x) = Vh

if ® is concave. Hence, for any y > 0
ofx) < h(y) + xy = y(h (y) + x)

.where hl(y) = h(y)/y. Let y = y(x) be defined by the relation
hl(y) = x. Assume .hl(yo) =1 for some y_>0. Then for x > 1,

o{x) <2x y(x) and

21



y

X (o]
[ o(x) -d—;s 2 J I-(;i—‘l dx =2 [ y al-log hy(y)]
1 X 1 Yy
y0
= 2y log hy(y) + 2/ log b (y)dy .
y

If, therefore, (5) converges, the same is true for hl and we conclude

that

] y0
[ ox) % < 2/ 108 ()ay .
1 b ¢ 0



ADDITIONS AND CORRECTIONS BEURLING

Lecture 1.
P. 1, line 6: read: Xn < tor e
*
o«
P. 3, line 3: read: ), a;‘l(% - xl ) > :—N
n=N n n+l N

P- 8, line 10: Delete "non-negative".

P. 8, next to last line: f-g should read fg .

P. 9, line 11: For 70 read Eo'

P. 9, The proof of Theorem IT has disappeared but can

easily be reconstructed by the reader.

Lecture 2.

P. 8, line 1 read:r M(1 +‘§(Eﬁ?ﬂ7’

P. 13, next to last line: read: for +t e [2¢C xn, 2C_ 2 .1

3 3 'ntl
© n
P. 16, next to last line: For 2 read Z .
-00 -00
Lecture
p. 2, The main distinetion between Theorem III and Theorem IV

is that ﬁ is supposed to vanish on a set of positive
A
measure in Theorem ITT, whereas in Theorem IV L is

= 0 on some open set.



THE STRUCTURE OF SOLUTIONS OF SYSTEMS OF
PARTTAL DIFFERENTIAL EQUATIONS
by

Leon Ehrenpreis

(Outline of Lectures)

Lecture I

The great simplicity of the theory of linear ordinary differential
]
equations with constant coefficients is due, for a great part, to the
fact that every solution of such an equation can be expressed as a lin-
solutions.
ear combination of the exponential polynomial/. One of the main objects
of these lectures is to give a generalization of this property to sys-

tems of linear partial ‘differential equations with constant coefficients.

Let R(C) denote real (complex) Euclidean space of dimension n.

x=(x;, «v. , x) [z=(z2, ..., 2z )] 1is the coordinate on R(C).
1 n 1 n

By O we denote a linear partial differential operator with constant

coefficients, and we write O = P(a/axl, cee, Q/bxn) vhere P is a

polynomial.'

The following Theorem I is approximately correct and will be made

Precise later:

Theorem I (Imprecise Version): Let f(x) be a function or dis-
tribution which satisfies ij =0 for J=1,2, ..., r. Then there

exists a measure dv(z) whose support is contained in the complex alge-

braic variety V of common zeros of PJ(z) = 0 such that



£(x) = [ 1%z dv(z)

where the integral converges in a suitable sense.

Another main object will be to Prove theorems on inhomogeneous equa-

tions, a proyotype of which is

Theorem II (Incomplete version): Let Q@ be a convex set in R
and let 815 «ev 8. be C on Q. A necessary and sufficient condi-
tion that there should exist an f e C(Q) with ij = 8, for
J=1, ... , r is that the gj should satisfy the obvious compatibility
conditions:

X djgJ =0

L

whenever dj are linear constant coefficient partiai‘differential oper-

ators with

rdo, =0.
dJJ

Analytically Uniform Spaces. A locally convex, Hausdorf topologi-

cal vector space W of functions or distributions on R /is called ana-

lytically uniform if

(a) W is reflexive.

(b) For each z, 1%z oy and the map z —e X% C oW
is analytic.v
(c) The linear combinations of éix-z are dense in W.



(d) Denote by W' the dual of W. For each g e W' we

\ .
define the Fourier transform

G’(Z) - g.eIX‘Z

for z € C. (We shall sometimes write g(z) for G(z).) Denote by

?I' the set of Fourier transforms of W' with the topology to make the
A

Fourier transform a topological isomorphism. By (c), W' 1s a space

of entire functions. Then we require that there should exist a family

K of continuous positive function k(z) such that

dl. For any G € ﬁf,

IG(z)l/k(Iz) -0 as |z] »w .

d2 . The semi-norms

llGll, = sup |G(2)]/k(z)
z e€C

A
define the topology of W!'.

K = (k} is called an analytic uniform structure for ¥W.

Proposition 1. The following spaces are analytically uniform

- 1. H of entire functions of x (considered as complex
va.riab;Les). |
2. E of ¢ functions on R.
3. D' of distributions on R.
The same is true for the analogous spaces on & convex set in R.

For the proofs see American Jour. of Math., vol. 78, pp. 685-T15.

3



Example. The space of real analytic functions on R with its

usual topology is not analytically uniform.

We have the following Representation Theorem.

Theorem 1. For every T € W there is a bounded measure de on

C and & k € K such that (symboiically)
(x) = [ e au(z)/x(z) .

This means, for any g € W',
g'T = [ G(z) dp(z)/x(z) .
‘This is Proven by the Hahn-Banach theorem.

Definition. A set ¢ ((C is called W sufficient if for every

A

k € K there is a k' € K and an A > 0 such that for every G € W!
we have

ol <A sup [G(2)]/k'(2) .
Z €0

. )
- Theorem 1 . The support of p in Theorem 1 can be taken to be

any W sufficient set.

‘Example. For the spaces H, E (n = 1) we may take o as the real
and imaginary axes. (Proof by harmonic majorant; see.a paper to appear
in Trans. AMS.)



Lecture 2

A much simpler application of Fourier transforms gives the follow-
ing extension of a theorem of Hartogs (which contains Bochner's extension):

Theorem 2. ILet Bl,‘... s ar be such that Pl’ .-+, P have no
common factor. ILet QlCCQ2 be convex sets in R. Let feCm(Qg-h-l')
satisfy bjf =0 for j=1, ..., r. Then there exists an fﬁ_edm(az)

with ijl =0 for j=1, ... , r and fl = f on Q, - Ql.

The proof will appear in Bull. AMS, Research Announcements.

¥ X K X ¥ X

Algebraic-Geometric Backgroﬁnd

Definition. An algebraic variety V is the set of common zeros of

a set of polynomials on C. V is irreducible if it is not the union of
two algebraic varieties. Lét F(z) be a function on V such that for
each z° € V there is a neighborhood N(z°) in C and & function G(z)
-holomorphic on N such that F(z) = G(z) for z € NNV; then F  is
called holomorphic on V. By a theorem of 6ka there is an entire func-
tion H(z) whose restriction to V is F. By H(V) we denote the ring

of holomorphic¢ functions on V.

Definition. A multiplicity variety V is a finite set of pairs

(Vj’ dj) where Vj is an algebraic variety and Adj is aconstant

coefficient linear djfferéntial ‘operator...For-edch’ j .let~.Fj € H(Vj).

Assume that whenever



z eV. NV, N...NV.
o Jy o Jg

there exists a neighborhood N(zo) and hqlomorphic functions Gj on
s
N such that

(a) st(z) = Fjs(z) for z € Nf\ijS.

(b) Whenever ) D, d, =0 where D are linear constant co-
‘ - Jg Jg ds

efficient differential operators then also

ZDJGJ(Z)=O for zeN.
s _

Then the collection {F J} = F 1is called a holomorphic function on V.
We call H(V) the space of holomorphic function on V.

Next let W be an analytically uniform space with analytic struc-
ture K. Let V be an algebraic variety. We call W'(V) the space of

F ¢ H(V) for which

|F(z)]/x(z) -0

for z €V, |z| -w. ?I'(V) -is given the natural topology. We define

A . . N
W'(V) as the space of F = {FJ} such that each F, € w'(v-j). - The

J
A
topology of W'(V) is the natural one.

. - . A
There is a natural continuous map Py WS (V) which is defined by

where @ F|V, is the restriction of 4F to v,.
6



. Suppose every polynomial defines (by multiplication) a continuous
map of W' into itself. ILet P = (P, .-, P_) be a set of polyno-

A A
mials. Iet P W' ‘be the module of elements Z Pj G,j where GJ e W'.

-In a future lecture we shall introduce further hypotheses on W

which we shall call localizability.

Theorem III. ILet W be analytically uniform and localizable.

A
Iet P Dbe as above. Then P W' is closed.

Iet 9 s, 0, P, .., P have the usual meaning.

IR &

Theorem IV. There exists a multiplicity variety V such that
whenever W is analytically uniform and localizable, q>v defines a

A AT A
topological isomorphism of the quotient space W'/P W' onto W'(V).

Each Vj occurring in V is a subvariety of the algebraic vari-

ety defined by the set of Pt'

By Hahn-Banch, Theorem IIT implies

Theorem I. Let W be as in Theorem III, and 51, cee Br as
usual. Then there exists a finite set of pairs (V,, Q,) where V
common ‘ J J-
is an algebraic subvariety of the set of/ zeros of the P s and QJ is

& polynomial with the following property: For any T € W which satis-
Pies BJT =0 for j=1, ... , r Wwe can find bounded measures My

with support on Vt and kt € K such that the symbolic representation
ix-
T(x) = 2 Q. (x) J & au (2)/k,(2) .
t .

Here V = (‘(VJ’ dj)} of Theorem IV and Qj is the polynomial corre-

sponding to 4 5
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lecture 3

Leon Ehrenpreis

Theorem IV of the previous lecture will be‘called the quotient

structure theorem.

There are three conditions for localiiability} The first two are:
- .
(a) Any entire function which is O(k(z)) for all k e K is in W'.
(b) For any N >0 if we replace the analytic uniform structure X = {k)

by K = {kN(z)} where

iy(2) = max [x(2)] (#]z])"
Alz'-zl <N
then KN is again an analytic uniform structure for W.
Condition (c) will Be introduced later.

For the proof of Theorems ITI and IV, we consider first the follow-
ing simplifications: K = {k(z)} where the k(z) are functions of | z|
only and are monotonically increasing; P consists of a single polyno-
mial which we denote by P. Theorem III for this case is readily verified.

By a linear change of coordinates we may assume that

m, G 3
P(zl,...,zn) =z + .Z P (zl,...,zn_l)zn
J=0
< _ tl t2 t
_ where Py is & polynomial of degree at most. m-j. Let P:=Pl P2 ---PSS
be the prime power decomposition of P and let V be the variety of

J

zeros of Pj' Then we assert that for this case we .can choose

3.1



tl-l ~tl-1 . ts-l
y_:[(vl,ld),(vl,a/azn),...,(vl,a /azn ),...,(Vs,ld),...,(Vs,azn )}

where id 1is the identity.

We must construct the inverse of Q. let Fe 'V\l' (V). It follows
from classical results (Oka) that there ;s an entire function G such
that va G =F. However, we must show that G can be _chosen to be in

A
W' with bounds depending only on F. Write

oo

= J J
(1) - G(zl,...,zn) = E G (Zl""’zn—l)zn
J=0
5 ' m 3 ot
where GY are entire. By replacing z, by - z P z + P/ we deduce
| St g 3
(2) G(z) = jgo G (zl,...,zn_l)zn + L(z) P(z) .

A simple computation shows that G and L are entire. (2) says that
(3) ¢=Yd z) mod PH(C) .

Al
Now, we can determine the G'j explicitly from (2) by applying the

Lagrange interpolation formula. This leads to an expression

gi(zl’ censZ

. )
(%) e}"](z seeeyZ ) = n-l
1 n-1 Dz, -2 )

2 .
where D~ is a polynomial which is not identically zero and D, is a

J

sum of terms of the form

3.2
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(5) A(z) 33 Gz )50z, 1y 2 )

for z € Vj s
By property (b) of localizability . A(z) plays no role. By our

0<ucg tj.-l -and where . A is an algebraic function.

choice of z,  ~We see that there is a constant B so that for z e.'v.VJ
(6) z < B1+] (zl, '”’zn~l)|] .
Using (6) we deduce that for some B’ >1 end all k e K
NJ _ '
(7) G(zy, .. 052 ;) = olk(B [I(zl,...,zn_l)ll)] .
Thus if the set (k(B'z)} 4is an analytic uniform structure for W +then
(8) & ez =0 .

It follows from (2) that G = D v zg e W is an extension of F

to C; that is,

We have also another representation for the quotient space v‘n/gﬁ' s

namely

(9)  W/pi

]

Q"(zn=0) ® - - ® ﬁ'(zn=0) (m factors)

1]

A m
t o
W' (z —O)



The isomorphism is given by writing any G € W' in the form (1) and
then using the reduction process to deduce (2).
It is readily verified that the process of passing from F to
Z:EJ zi is one-one, and continuous and provides an inverse for o, on
i/ B
Next we assume, with the same hypotheses on K that 'g = (Pl’P2)'

To study the quotient space
f,\ll/gﬁl
we study the quotient

oo e

For ‘this purpose we use the representation (9). Then multiplica-
A A '
tion by P, on W' defines on W'(zn=0)m a matrix

_ (1
Fo = (Pe')i,3=1,...,m

where péj

are polynomials.

Thus to study %"/Bﬁ' we have roughly the same problem as before,
except that

(1) The number of variables is' n-1;

(2) We have to form the quotient of W'(zn=0)m by the matrix of

1y

polynomials (p2

Now (1) suggests that an induction argument will work. (2) is in-
deed a complication and requires a difficult algebraic theory. This

theory leads to a prescription of V; it will not be given here.

3.
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Next we pass to the case of general W; i.e. » the functions k(z)
:are no longer assumed to depend on |z| . We apply the above pro-
cedure locally and then need a piecing together process:

Let 2° €C and let N>0. By S(z°,N) we denote the cube

le

(o]
- R <N
) zy - Rzl

0.
1 - I <N
|12 2,

J

where R and I denote the real and imaginary parts.

If V is a multiplicity variety then the intersection of V with
S(z°,N) 1is defined in an obvious way. If FeH(Y) .. and GeH(CY),
we say G extends F if cpv G = F. Similarly we speak of an extension

of F. over. S(z°,N). The main local extension result we have is

Theorem 3. Let (Pl,...,Pr) as usual, let V be the multiplicity
variety associated, and let N > O. Choose F e W (V). Then for each
z° we can find a function ¢(z°N,z) which is holomorphic on S(z%,N)
and which extends F from VnS(z%N) to S(z°,N). For any ke X we
-have

su;i0 lG(zo,N,z)I/k(zo) -0 as |2° —w .
z € S(z°,N
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In addition to Theorem 3 we shall need another result which is

proven in the same way as Theorem 3:

Theorem 4. Let (Pl, .. "Pr) be polynomials and let N > 0. Then
there exist positive constants A, N' which depend only on Pl, .o .,Pr
‘and N with the following properties: ILet F be holomorphic on

S(z%N') and satisfy
F(z) = ZGJ(z) PJ(Z) "z e 5(z9N)

where GJ are holomorphic on S(z°,N'). Then there exist 6'3 which are

holomorphic on S(z°,N) such that

F(z) = Za'J(Z).PJ(Z) z € 5(z°,N)

TGl <4 omax, R Qr2)
z'e S(z ,N')

The importance of Theorems 3 and 4 is that, due to the conditions-
for loca_,lizabili.tj, all local questions can be treated satisfactorily.
We shall now explain how to pass from the local to the global.

In general, the N' of Theorem 4 is > N; however, for the pur-
Pose.of  simplifying the exposition we shall assume that N' can be chosen
equal to N. The modifications if N' > N are easy.

We shall use a, Q, eté. to denote lattice points in C. Let
N >1 and suppose that for each Q we are given é. function f£(Q,z)

Which is holomorphic on S(a,N). Then we call f a cochain (for N).



We say that f is a nice cochain if for every k e K

sup |£(a,z)|/x(z) -0 as |a] -»w .
Z € ~S(a:N)
A
the nice cochains form a space W'(N) with a natural topology. We say

that f € Y;‘T'(N,g_) if whenever S(&,N) N S(a'N) is non-empty
f(a,z) - f(a';z) = ZGJ(a,a',Z)PJ(Z)

for z € S(a,N) N s(a',N) where Gj are homomorphic on S(a,N) N s(a*,N).
A A
Finally, we define the quotient space W'(N,P)/PW'(N,P). All these spaces
have natural topologies defined by the functions k ¢ K.
The restriction map (pv defines a local restriction map
A 1A - .
;pg; W'(N,P) - W'(V) which by construction is seen to be & continuous map
= A : Q A
of W'(N,P)/PW'(N,P) »W'(V). There is also a natural continuous map

A A A A
¥p? W'/PW -aW'(N,E)/EW’(N,E) .

Theorem V. In the diagram (for N large enough)
W'/Pwt

¥p

W) € Lo W' (N,R)/BW* (N, )

.&all maps are topological isomorphisms onto and the .above diagram and all
variations obtained,by replacing any map by its inverse are commutative.

Clearly, Theorem V contains Theorem IV.

L2



Theorem 3 shows that Qg has a continuous inverse. Thus the
proof of Theorem V will be ca;plete if we can produce a continuous
inverse for ¥p- This is constructed by "piecing together" one real
dimension at ;—time by a method which is analogous to the one used by
Oke. when there are no bounds. It is here that the third condition for
localizability is needed.

By using the fact that WP is a topological isomorphism onto

we deduce

Theorem II (complete version). let W Be localizable and aﬁa-
lytically uniform; let 8yreee18, € W. A necessary and sufficient con-
dition that there should exist gn f € W satisfying ajf = gJ for
Jd=1,...,r is that the gj should satisfy the obvious compaﬁibility

conditions:

zdjgj =0

whenever d, are linear constant coefficient partial differential

J
.operators with

Zdjaj =0.

4-3
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We shall now give several applications of our theory.

Application to Pélya's Theorem.

Iet n=1 and let us consider x as a complex variable. Ilet
! be a convex set in the x space and denote by H(Q) the space of
functions holomorphic on Q. The result of Pélya gives a description
of ﬁ'(ﬂ) as follows: Write z = Izleie. Then there is a function
®(6) depending on Q@ such that an entire function F(z) belongs to

A
H'(Q) 4if and only if there is @ B<1 and an A > O such that

|F(z)] <A Blzle(e)

The method of Pcflya can be applied to the case n > 1 but, appar-
-ently, only to those convex sets Q which are products of convex sets

in the complex x, planes. We shall show how to extend Po/lya's theorem

J
to the general case:

Let n=2m, and let 2 be a convex set in R. (We return to
the usual notation that x; are real veriables.) ILet E(Q) denote 1?he
space of ¢ functions on @ with its.usual topology. Then the Paley-
Wiener-Schwartz theorem states that there is a function ¥ of n real
variables which is determined by Q such that an entire function F
belongs to f)'(Q) if and only if there isa B <1 andan A>0 so
that

By(Iz_,...,Iz )
(1) [|F(2)] < A(1+] z} )A e ‘1 ‘n

where 1 denotes the imaginary part.



We note that if we consider R- as complex space c™ with the
coordinates Xy + ixm+j then H(Q) is the subspace of E(Q) defined
by the Cagchy-Riemann equations: ajf = O where Bj = B/ij + ia/aij.

By Fourier transform and Theorem IV we claim that ﬁ'(ﬂ) consists
of those entire F on C" for which there is & B' <1 and an A' >0

so that

By (Iw,,...,Iw ,~Rw_,...,-Rw )
(2) F(w) S A'e W l) 2 m} l’ 2 m .

For, the multiplicity variety V is the algebraic variety V of common

= + 1 j = I 1 ]
zeros of Pj(z) zy iz for j=1,...,m. If we write

= ’-i.- i
2y = by T AN
then on V we have
Thus
Ve ) =¥ e by et )

and the result follows by calling a)j = gj + in 3

Application to Hyperbolicity and Ellipticity

et W and Wl be localizable analytically uniform (1l.a.u)
spaces, and let O = 81,...,8r. Denote by W(d) (or Wl@)) the space
of feW (or fe wl) satisfying ij =0 for j=1,...,r. We.are
often interested in the question as to when W(9) = Wl(§). By Theorem

A A
IV this is the same as the question as to whether W'(V) and wi(_\{) are
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fhe same, where V .is the multiplicity variety associated with P. To
‘resolve this, we have only to show that the functions (k} and [k-l]

are the same on V, the algebraic variety of common zeros of P_,... ’Pr

1
vhere {k} and {kl] are analytic uniform structures for W and W

, 1
respectively.

For example, we take W = space of distributi.ons on R and Wl
the space of ¢® functions on R. The system O is called hypoelliptic
ir W) = Wl@). By inspection of the analytic uniform structures we
deduce

Theorem 5. O is hypoelliptic if and only if

lim inf | 1z|/10g(1+]|2] ) = w .
zev, Iz —o

This theorem (for r = 1 ) was found first by HBrmander and later

independently by the author. The case r > 1 can be reduced to that of

r =1 by a theorem of Lech.

As a second example, let us divide the variables x. into two

J

' : .o . > ’
classes X5 ,xl and x£+l, X Iet b >0 and let Wl be the

space of functions which are C  in lel <b, e.., lle <b and all
Xppq7 *o x . W is the space of C  functions on R. We say that

d is hyperbolic in (xl,...,xz) if W(§)=Wl(§_). We have

Theorem 6. A necessary and sufficient condition that _§ by hwér-

bolic in (xl,...,xz) is that there exists a ¢ >0 so that

|Izj| <clitlrz, | + --- + IIznl) for §=1,...,2

£+1

for 2z € V.



Extension to Convolution Systems

We can obtain some of the above results for systems of éonvolution
equations, that is, where the BJ are replaced by certain convolution

‘operators. In particular, we have the following

Theorem 7. ILet 0 be a linear differential diffe;ence_operator

with constant coefficients.

Then every f € W which satisfies Of = 0

has a Fourier representation

£(x) = [ % qu(z)/k(z)

where k € K and p is a bounded measure on C whose support is con-

tained in the set

V' = (z]aist(z,V) <1} .

V is the set of zeros of P(z) = 0, where P is the Fourier trénsform
of J.
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CHAPTER VIII

DIEFERENTIAL OPERATORS WITH NON-SINGULAR CHARACTERISTICS

8.1 Necessary conditions for the main estimates. Let P(x,D) be a

differential operator of order m defined in an open set CLRn. In this

chapter we are concerned with proving and applying estimates of the;fonm

(8.1.1) ol 51N 0%)? 2T ax < K, [IP(x,D)u|? e2*® ax ,
v al < m-1

o0
u e CO(Q) . T>T

and also weaker estimates of the form

(8.2.2) = X% [(™)0%u? ™ ax < K, [IP(x,D)ul? ™ ax +

|| m-1

T2(m-|a| )-l(m-?_

a2 3¢ ®
o D" e ax, u e c (@), v>7_.

K
3 lof <m-2

(The polynomial coefficients havé been introduced here for convenience later
or.} From inequalities of the form (8.1.1) we shall obtain uniqueness theo-
rems for the Cauchy problem (see section 8.9) and from the estimates (8.1.2)
we deduce existence and regularity theorems for solutions of the differential
squation P(x,D)u = £ (see sections 8.7 and 8.8). 1In this section, we shall
cnly prove necessary conditions for the validity of (8.1.1) or (8.1.2). We

“egln by studying two simple but very useful examples.-



Lemma 8.1,1. The estimate

2 kat2 2 at2 oo
(8.1.3) flul® e dt < Cfldu/dat]|” e dt, u e Co(Rl)

where & and C are real constants, C >0, 1is valid if and only if
(8.1.4) 2aC >1 .

Proof. If a <0 and we take ue(t) = v(et) where v ¢ C:(Rl) and
v(0) = 1, it follows when € —» O that

2 at2

7
2t a¢; [lau_/as|” e at o0,

2
u 2eat dt - Je
€

which contradicts (8.1.3). If & =0, the left-hand side of (8.1.3) would
instead be proportional to l/ € and the right-hand side proportional to ¢,
which again shows that (8.1.3) cannot hold. Now if a >0 we set v(t) =

atln
u(t) St /2 and obtain by means of an integration by parts

2 .
flu‘(t)|2 &2V ae =‘f|v'(t)-atv(t)]2 dat = f|v'(t)+atv(t)|2 dt +

2
+2a [v(£)]? at >2a flu(t)]® ¥ at .

. Since we can come arbitrarily close to the sign of equality if we let u
approach the function e at , for example by taking ue(t) =»e_a't v(et).

with: v as above; the lemma is proved.
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Lemma 8.1.2. The estimate

2 2
ff|u|2 eat + 2bts + cs

(8.1.5) dsdt <

2 at2 + 2bts + 052 o
< Cff|oufds + 1du/dt|” & dsdt, u € CO(RQ),
where a, b, ¢ and C are real constants, C >0, is valid if and only if
(8.1.6) 2(a+c)C >1 .

Proof. Writing a = —;‘-(a+c) and B = %(a—c) we make the substitution

%—(&ﬁb)(sﬂt)2
u(s,t) = v(s,t)e s

which reduces (8.1.5) to the estimate

' 2 2 2 2
(8.1.5)" [fIv|? X¥*7) 4 at < cff|av/dssidv/at]? X E ) g at

vV e CO(R2) .

As in the prcof of Lemma 8.1.1, it follows that a must be > 0. Writing

%'a(52+t2)
v(s,t)e - w(s,t) 5

we also obtain as there
“ 2 a(t2+52) | 2
JI|3v/3s + idv/dt|%e dsdt = [[|dw/ds + 1dw/dt-a(s+it)w|dsdt =
= [[|ow/3s - 1w/t + a(s-it)wl-adsdt + ha f”ﬂadsdt .
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The sufficiency of (8.1.6) now follows immediately and to see that (8.1.6)

' -a(52+ t2)
is necessary. we only have to let v approach e . The proof is

complete.
Cambining the two previous lemmas we can now prove the followlng one.
n

Lemma 8.1.3. Let A(x) = , %;l akaJxk, where a
1 &=

quadratic form and b = (bl, cee bn) be a vector in C . Then the inequality

= b
Kk akJ’ _.e a real

n
2 A 2 A
(8.1.7) Jlu]" e"ax <c [ |§ bijul e dx , ue C:(Rn) ,

when C is a constant >0, 1is valid if and only if

n

(8.1.8) 2c b >1.

'2 a . b,

J,k=1 Ji ]
Proof: 1In view of the invariance of the result we may if b is-pro-

portional to a real vector assume that b = (1, O, ... , 0) and otherwise
we may suppose that b =.(1, i, 0, ... , O). Assuming, for example, that we
have the second case, we choose u(x) =,v(xl,x2)w(x3/e, cee xn/e) in
(8.1.7), where v and w are in ,C:. Letting € - 0 after dividing by

n .
€ , - we obtain

A(xl,xe,o,...,O)

(8.1.9) ff]v|2 e dxldx2~§

Ale,xe,O,...,O)

< clffav/ax, + 1dv/ax,|% e ax,dx,



Hencé it follows from Lemma 8.1.2 that 2C(all + a22)_2 1, which is the
same as (8.1.8). -Similarly, if b= (1, 0, ... , 0), we also cbtain using
Lemma 8.1.1 that (8.1.8) is necessary for (8.1.7) to hold. .Since in these
coordinate systems the sufficiency also follows immediately from Lemmas
8.1.1 and 8.1.2, the prddf is complete.

We shall now prove conditions which are necessary for (8.1;1) or
(8.1.2) to hold. In doing so, we assume that the coefficients of P(x,D)
are bounded, that the coefficients in the principal part Pm(x,D) are in
Cl(ﬂ) and that ¢ 1is real valued and belongs to 02(9). Keeping the no-

tations of Chapter VI, we shall write
-) .
PL,0) = dr, 00,00/, B (x,6) = OB (x,8)/3x,
and similarly for higher order derivatives when they occur.

Theorem 8.1.1. Let N = grad ¢(x) where x ¢ Q and let € = ¢ + igN

with ¢ eR and O £ 0 eR

1 satisfy the characteristic equation

(8,1f10) | Pm(x,g) =0 .

CIf (8.1.1) is valid it then follows that

LT R s

o |
(8.1.11) g2 < 2“1% 5 s B0y 2Bty 4

+ (210) ™ §(P@k(x,;)Pm(kj(x,t)-Pik)(x,c)Pm,k(x,‘ci)g ;o
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and if (8.1.2) holds it follows that

' 2(m-1) . 2,,,2 2\m-2 | S o (3) (%)
_(8‘.1.12) 17 kg (18]%46™)® 521(2{1}:1&—;‘%;?“ (x,8) B "(x,8) +

+ (210) }E-(Pm,k(x,;)Pm‘k’(x,c) - 2Bt Pm(k"(x,;))} ,

vhen the left-hand side is non-negative. -

Proof: It is no restriction to assume that x = 0 and that o(0) =-0.

Take a function w € C_ such that
- 2
w(x) = <x,f >+ 0(|xl ), x =20,
‘ ' )
and set with V¥ € ,co(Rn)

u (x) = exp(ivw(x)/0)¥(x /) .

- -Note that

o(x) - Im w(x)/o = A(x) +.o(|x|2)

where A 1s a quadratic form, and that the definition of . u_ 1s chosen so
that tA(x) 1s kept under control in the support of L .From Leibniz'

formula we obtain.



P(x,D)uT(x) = (T/o)m‘l exp(i'rw/c){(T/G)Pm(x,gradw)w(x ft) +

+ Z P!El'j)(x,gr&dW) Jr (DJV)(X JT) + O(l)g ’
n _

where O(l) denotes a function which is uniformly bounded when T — oo,

-From (8.1.10) it follows that for some a e C, we have
Pm(x, grad w) = <x,a >+ o(|x|) when x -0 .

Passing to the limit after introducing x Yt as a new variable s We now

obtain

Tn/2(0/1)2(m-l) <1 ”P(X,D)u1_|2 2™ ax 5
o (3) 2 2A
—)f|<x,a>\|r/a+ZP'J(0,§)DvH e dx, T -,
_ =1 - J '
‘Similarly, we find that

ré/e(c/T)g(m-l) g f(m(;[l)lDo‘uTI‘2 2™ ax 5 |§|2(m'l) f|j4r|2 A ax

m-

when T —» o, If (8.1.1) holds, we hence obtain the inequality

(8.1.13) ICIQ(""”IM Fax <x; [l<x,8 > /o + 2 P100,0)0,4/2 eax
veCl(R) .

In the same way, it follows from (8.1.2) that
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(8.1.14) |§]2(m'l)f|w|2 e ax < K, < x,2 > ¥/o + }:P(J)(o g)D v|2 2A1x

2,%)m2) Pry1? Phax , veclm)

+ K (165

Let us first analyze (8.1.13). If P;J)(O,g) =0 for all j, we im-
mediately find that (8.1.13) cannot hold by just taking any ¥ with support
in the neighbourhood of the origin where K1|< X,8 >| < |§|2(m -1) . Hence
Péj)(o,g) # 0 for some J. We can therefore choose w so that a = 0. For

this means that DP (x, grad w) =0 for k=1, ... , n when x =0, that

is, with ik = azw/axjaxk,
v o(J)
(8.1.15) Jzé?m (o,g)wjk(o) + Pm’k(o,g) =0, k=1, ... ,n,

and if some P;J)(o,g) # 0, this can obviously be satisfied by a suitable
choice of wjk(O). (See also the proof of Lemma 6.1.3.) With w chosen

in this way, it follows from (8.1.13) in view of Lemma 8.1.3 that

(8.1.16) |g|2(m'l) <K - > [wjk(o) - (o)/c] P(J)(O ¢) P( j(o Q)

Jrk=1

Now we have, in view of (8.1.15),

% ¥y, (0) P‘J’(o 6) $(0,¢) - ANNCES 5)(0,¢)

3,k=1 9

and using this to eliminate w 1in the right-hand side of (8.1.16) we obtain

(8.1.11) for x =.0.



‘ 2 2 m-2
Néxt assume that (8,1.14) holds. When K, —— |1 + —— | ‘2
¢

3 |§|2 <1, 1t
‘follows as before that P(J)(O t) # 0 for some J and the above argument
again proves that (8.1.12) is valid. -The proof is complete.

‘When the coefficients are constant, the right-hand side of (8.1.11) and
(8.1.12) simplifies to = 82¢/3x33xk P;q) () Pﬁ#l(g) ~. ‘Thus these inequal-
ities are in fact conditions of uniform convexity and subharmonicity of @
along certain directions and two-dimensional planes.' Also note the ob?ious
analogy with the E. E. Levi condition for pseudo-convexity in the theorybof
several complex varisbles. A further discussion of the geometfic significance
will be given in section 8.h.

It is father clear from the proof of Theoreq 8.1.1 that the right-hand
side of (8.1.11) and (8.1.12) is invariant for changes of coordinates. . How-
ever, we shall give an explicit proof since the invariance will be used in
an essentiél way later on. To do so we let w be a function and ¢ a réal
number # 0 such that ¢ - Im w/o vanishes of the second order at & point

X. Then the second derivatives
2 1 2 '
) ¢/bx33xk -<Imd w/axjaxk

at that point form a symmetric covariant tensor. Furthermore, we have al-
ready noted (see section 5.3) that Pm(x,_grad w) 1s invariantly defined as
the coefficient of t° 1in the polynomial e -itwg P(x D)eitw of t., Hence

.Péj)(x, grad ) 1s a contravariant vector, for if ¥ .is another function,

it follows that

Z P(J)(x, grad W)a\y/ax i b IX, grad(w+ev)]/



is an invariant. Combination of these two facts shows that

E:_(82¢/8xjaxk - % Im bzw/axjaxk) Pij)(x, grad w) Pik)(x, grad w)
Jsk=1

is an invariant. Now the invariance of Pm(x, grad w) shows that

n
32; Pm(x, grad w) =4§ P;J)(x, grad w) Bzw/axjaxk +'Pm,k(x’ grad w)

is a covariant vector, hence the scalar product with the contravariant vec-

tor with components Pik)(x, grad w) 1is invariant. It follows that

> 32¢/ijaxk Pij)(x, grad w) ng)(x, grad w) +

J’

is invariant, and since ﬁhis is precisely the right-hand side of (8.1.11)
and (8.1.12) if grad w = {, our assertion is proved. Also note that sub-
stituting a(x)P(x,D) or P(x,D)a(x) for P(x,D), where a(x) 1s a non-
vanishing function in Cl or Cm, only means multiplying the right-hand
side of (8.1.11) and (8.1.12) by the positive quantity |a|2' when

.Pm(x,g) =.0.
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8.2 Differential quadratic forms. The essential point in our proof

of inequalities of the form (8.1.1) and (8.1.2) is an integration by parts
in the integral flP(x,D)ul2 eZTQ dx. As a preparation we shall in this
section make a systematic study of partial integration in such integrals.

First consider a "sesqui-linear" form in the derivatives of a function u,
(04
(8.2.1) % 8y D Py
: a,p

where aaB are constants and the sum is finite. Such an expression we call

a differential quadratic form with constant coefficients, and we associate

the form with the polynomial .
ARy a B
(8.2.2) F(E,E) = Dagg ¢7 8P, tec, .

‘This is a complex valued polynomial for the underlying real structure in Cn

and it is obvious that the correspondence between the form (8.2.1) and the

ei<x,§ >

polynomial (8.2.2) is one to one. Since for u(x) = the form

-2<x, Im {>

(8.2.1) becomes e F(Q,E), the correspondence is also invariant

for linear changes of coordinates. (The variable { 1s transformed as a
dual variable of x.)
From now on we may thus use the notation

¥(D,D)ud = Y %op % tPu

if F 1is defined by (8.2.2). The form will be said to be of (double)

order (p;m) 1if in (8.2.2) we have |[a| + |B| <u and |a| <m, || <m
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when a, 8 # 0. Sometimes we refer to p as the total order and to m as
, .
the separate order of F. -We may, of course, always assume that m<p<2m.
Let Gk(D,B)uﬁ, k=1, ... , n, be differential quadratic forms and

let F(D,D)uu be the divergence of the vector with these components, that is,
’ - & d kK= -
(8.2.3) F(D,D)uu = 2362; G (D,D)uu .
1

.Since Leibniz' rule gives

5%; (ud) = i[(Dw)a - u D) 1,

the identity (8.2.3) is equivalent to the algebraic identity

n

(8.2.4) F(ED) = 13 (T ¢(¢,7)

From (8.2.4) it follows that

(8.2.5) F(E,¢)

i
o
-
v
m
oo}
-

if F can be represented as a divergence (8.2.3). .We shall now prove the
sufficiency of (8.2.5). .First we only note that the interest of the values

of F(t,l) for real ¢ 1is also shown by the formula
JF(D,D)uiax = (2x) ™" [R(e,0)18(e)[%at , we R,

which follows from Parseval's formula.
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Lemma 8.2.1. If (8.2.5) is fulfilled, it follows that there exist dif-
ferential quadratic forms Gk(D,ﬁ)uE such that (8.2.3) is valid. We then
have

' 1
(8.2.6) G(&,8) = - 3 30— F(g+in, E-in)y Lo 0 LER,

-
2o

If F is of double order (u;m) it is always possible to choose & of

double order (u-l;m) and if u < 2m one can even choose Gk of order

(u-15m-1).

Proof. The expansion of F(¢&+in, &-in) in powers of ¢ and 1 con-
tains no terms independent of n if (8.2.5) is fulfilled; hence we can find

polynomials gk(g,n) such that

(8.2.7) F(&+in, E-in) = ), g (¢,m)

Writing § = & + i1 we have ¢ = % (¢ +T) and in = % (t -T). Thus

. (8.2.7) gives an identity of the form (8.2.4). Furthermore, if we take

§ =&+ in in (8.2.4), differentiate with respect to 1, end put ‘n =0
afterwards, we immediately obtain (8.2.6).

To prove the statement about the order of Gk we have to argue more
carefully, however. Let us say that two polynomials Fl(g,E) and Fe(g,f)
-ofborder (g;m) are congruent and write F1 = F2 if F = FlfFe ‘can be
written in. the form (8.2.4) with Gk of order (p-1; m') where m' = m-1

if p<2m and m' =m if p = 2m. .We now claim that
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(8.2.8) ST

if Q' + p' = " + B" and both sides are of order (u;m), that is,
lat] + |B'] = |a"] + |B"| <u and the lengths loet], ... 5, |B"] are all
<m. First let u <2m. Then either [a'| or |B'] 1is <m. If

|@'] <m we can use the identity

and if |B'| <m we can use the identity

§y=0844 (CJ-CJ)

. t 1

to show that the congruence class of §a Eﬁ does not change if one fac-
_ﬁl al

tor in t~ (resp. { ) 1is replaced by its complex conjugate. Repeated

use of this procedure proves (8.2.8) when u <2m. If up=2m this proof

remains valid unless |a'| + |a"] = |B'] + |B"| = 4, hence |a'| = |a"| =
=.|B'| = |B"] = m. We can then use the identity

al __6( . .
instead to replace one factor is ¢{ and one in { simultaneously by

. o . ) t._Aat
their complex conjugates without changing the congruence .class of Qa’ fﬁ .
This proves (8.2.8).

From (8.2.8) it follows that every F of order (p;m) is congruent

to a sum of the form -
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_ a
Fl(Q:C) = Zaw g g

"of order (u;m) where there never occur two different non-zero terms with

the same multi-index sum Q + B. But if F(¢,E) =0 we have Fl(g,g) =0

also, hence all adﬁ must be O. The proof is complete.

We shall now discuss differential quadratic forms with variable coeffi-

cients
(8.2.9) 3 ag(x) D% Py
which we again denote by F(x,D,D)uu where

F(X)Q;-C—) = Z aocﬁ(x) ga Ea .

Lemma 8.2.2. Let F(x,D,D)uu be a differential quadratic form of de-

gree (u;m) with coefficients in CV(Q), v >1, and assume that
(8.2.10) F(x,t,t) =0, x e Q, & ¢ R -

Then there is a differential quadratic form G(x,D,E)uﬁ of lower total

order with coefficients in Cv-l(ﬂ) such that
(8.2.11)  [F(x,D,D)uu ax = fG(x,D,D)ult dx, u € c:(n) }

G may always be chosen of.order.(u-l; m) and if 2m > p  we may choose G

of order (u-1; m-1) - Furthermore, we have
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Ny ;
(8.2.12) G(x,¢,8) = 5 Flx, grin, g-dn)/0 _

s
wq o)
-

1
space of all differential quadratic forms of order (u;m) with constant co-

Proof. let F., ..., FN be a basis in the finite dimensional vector

efficients, which satisfy (8.2.5). Then we can find differential quadratic
forms Gl;, J=1, ... , N; k=1, ... , n, of order (p-1, m-1) if u<om

and of order (p-1, m) if p = 2m, so that

=}

- - 5 .k
(8.2.13) FJ,(D,D) u = 23;1; J(1) D)w, j=1, ... , N.

e

In view of (8.2.10) we may write with uniquely determined coefficients
ay € cv(q)

N
F(x,D,D) wu = ) a (x) F (D,D) uu .
FOoD) wi = e (0 %, (0,D) i

Using (8.2.13) we thus obtain after an integration by parts that (8.2.11)

is valid with

G(xDD)uu- Z E(Ba/axk)G(DD)uu.
371 k=1

-Since (8.2.12) follows from (8.2.6), this completes the proof.
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8.3 Estiﬁﬁtes for elliptic operators. In this case we are only inter-
ested in proving an estimate of the form (8fl.l) for the consequences of an
estimate (8.1.2) are then weaker than the results obtained in Chapter VII.
‘Thus we leave it to the reader to verify by a slight modification of the
proof of Theorem 8.3.1 that (8.1.12) implies (8.1.2) (with different con-

stants K, K3), but we shall prove in detail

Theorem 8.3.1. Let & be a bounded open set in .Rn, @ & real valued

function in C (Q) with gred ¢(x) # O when x e @, and P(x,D) a differ-
ential operator of order m with bounded measurable coefficients in § and
the coefficients of the principal part Pm(x,D) in -Cl(ﬁ). Assume further

that P is elliptic in Q, that is,

(8.3.1) o Pm(x;g) £0 if xe0,04 te R,
and that

n .
(8.3.2) % Fofox P (x0) () (. 6) &

Jsk=1 Joen "

m

n
+ (i) S e () Pt - P{) (4, ) P (5001 >0
k=_l $ . 3

if (= ¢+ it grad (x), with x e Q, ¢ € Rn ‘and T € R and the charac-

l’

teristic equation %m(x,g) = 0 1is satisfied. Then there is a constant K

such’that.

(8.3.3) | ]Z: Te(m-lal) leah|2.e21¢dx.5'Kr fIP(x,D)u[2 eadex, u e CZ(Q),
al <m

vhen 1t is sufficiently large.
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As a first step towards the proof of Theorem 8.3.1 we prove that the
validity of (8.3.3) is entirely a local property. (Incidentally, this
shows that Theorem 8.3.1-13 also valid if Q is an 6pen set in a manifold

instead of an open set in ’Rn.)

Lemma 8.3.1. Let Q be a bounded open set and assume that every
x € @ has an open neighbourhood w, such that (8.3.3) is valid for some
constant K, when u € C:(ﬂ ﬂmx) and . 1. is sufficiently large. Then one
can find K so that (8.3.3) is valid for all u € C:(Q) when 1 1is large
enough.

Proof. .Choose a finite number of points xj, J=1, ... , J, in Q
such that the neighbourhoods w ~ cover the compact set 5, and choose

J

c( that Y @, =1 in Q. If c(Q) hen h
q)Jeowx)so a Py = in Q. uecC we then have

J

u = Z u 3 where u 3 =Q Ju € CZ(Qn wa). Cauchy-Schwarz' inequality gives

J
p%l® <3 % 10,17
1

If (8.3.3) is valid for all functions in c:(nnux ), =1, .. , J, we

thus obtain with constants ; C and C!

5 rz(m'|°‘l)f|1)°’u|2e2""dx <ay % Te(m-lal)leau |2e2T(pdx<
o} <m J laf<m J -

<Cx Z flP(x,D)ujleezrq)dx < C"rf('P(x,D)ul2 + |Dau!2)e2'rq)dx s
J

a| <m

where the last estimate follows from Leibniz' formula
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P(x,D)u, = @ .P(x,D)u + > [P(a)(x,D)u] Dacp Jai .
| -J J la| # o J

When =t >max (1, 2C), it follows that (8.3.3) is valid with K = 2C.
-We next show, which is still simpler, that lower order terms are irrel-

evant for the validity of (8.3.3).

"Lemma 8.3.2. Let r(x,D) be a differential operator of order < m,
with bounded measursble coefficients. If the estimste (8.3.3) is valid for
.-l'arge T , it will still be true for large 1t with a larger constant K

if P(x,D) 4is replaced by P(x,D) + r(x;D).

Proof. If we make the estimate

' |P(x_,D)u|2 5 2| [P(x,D) + r(x,D)]u|2 +Cc ) ]DO‘ul2

o] <m

in the right-hand side of (8.3.3), the statement follows as in the proof of

Lemme. 8.3.1.

Proof of Theorem 8.3.1. It suffices to prove that (8.3.3) is valid

locally when no lower order terms are present in P(x, D) In doing so we
assume that O € Q@ and have to prove that (8.3.3) holds for all ueC (9 ),
if Q = {x; x € Q, |x]| <8} and 5 1is sufficiently small. .Since by as-
sumption grad cp('O) 74 O and ¢ € C we can change coordinates in a neigh-
bourhood of O so that ¢ becomes a linear function, ¢(x) = <x,N >, for
we have already proved in section 8.1 thé.t (8.3.2) is invariant for changes
of coordinates and the invariance of (8.3.3) is obvious. With

< -
T x,N > = u(x) e i <x,i7N >

v(x) = u(x) e we now have
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fIP’m(x,D)uI2 2T XN >y o fle(x,D + iTN)Vlz ax >

|2 - lﬁm(x,n - i-rN)v|2}dx = fFT(x,D,ﬁ)vw'r ax ,

v

f[lPﬁ(x,D + itN)v

where

FT(x,;,'{;') = P (x, {+17N) P _(x, T+ieN) - Fm(x, ¢-itN) Fm(x, ¢-1TN) .

Tﬁe reason why we have made this trivial estimate is that FT(x,g,g) =0 for
real ¢ so that we can make an integration by parts uéing Lemma 8.2{2. Tﬁus
there exists a form

2m-1

GT(x,D,ﬁ) = % G(J)(x,D,B)

with continuous coefficients, such that G(J) is of order (2m-j-1;m) and

(8.3.&) fGT(x,D,ﬁ)v; dx = IFT(X,D,ﬁ)w-r ax < ”Pm(X,D)u|2 LT <X N>

Furthermore, (8.2.12) gives

n .
(6.3.5) 6 (x6,8) = 1 3 (5900, ) B, o, prten) -

-y - & ST
- Pm,k(x’ §+i‘rN)Pm (x,e+17N)] + 2 .Im Pm(x, e+1iTN) g Pm,k(x, g+iTN).

We shall now show that there are positive constants Cl and 02 such

that

(8.3.6) |§+i'rN|2m <Gt GT(O, £, ¢) + cz--lpm(o,gﬁrn)lg s 'l"_>_‘ 0, E€R .
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In view of the homogeneity it is sufficient to prove (8.3.6) in the compact
set M defined by e + iTNI =1, T >0. In the subset Mb of M where
Pm(O, ¢ + 17N) = 0 it follows from (8.3.1) that 1 has a positive lower
bound and (8.3.5) shows that (8.3.2) means precisely that GT(O,g,g) >0
there. Hence we can find Cl so that (8.3.6) is valid with strict inequal -
ity when (§,T) € M . For reasons of continuity (8.3.6) must remain valid
in a neighbourhood V of Mo and since IPm(O, E + iTN)I is bounded from
below on the complement of V in M, we conclude that (8.3.6) holds if C,

.1s chosen sufficiently large.

Multiplying (8.3.6) by I9(§)|2 and integrating, we now obtain
- A 2 —_ -
(8.3.7) (20)™" [19(€)|7) ev1on]Pae < ¢, 7 JG_(0,D,D)vv ax +
2
+C, fle(O,D+iTN)v| dx .

If € 1is any given positive number and & 1is sufficiently small, the con-
tinuity of the coefficients of GT and of Pm’ Schwarz' inequality and the
fact that terms in GT containing a factor rj are of order (2m-l—j; m)

now gives
(8.3.8) (2n)’n_f|$(§)|2|§+1ergmdg <cT fGT(x,D,ﬁ)vG dx +

+C, f]Pm(x,D+irn)v|2dx + e(en)™® flv(§)|21g+1rul2mag ,

0
u e~Co(95) s

in view of the trivial estimates
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(N2 e 0% 12 ax < fIRe)12 e+ 1on|® ag, o] <,
and

TQ(m—lal) flﬁaulaeQT <x,N>. (2“)-n12(my|a|) f|(§+11N)a|219(§)|2.d§

-2(m-|af )

< In] (2™ [lesaen|®™ [9(e)|% at, lof <m .

N

If €= the estimate (8.3.3) follows when u € C:(QS)' The proof is

complete.
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8.4 Estimates for operators with real coefficients. For non
elliptic operators it is necessaryfor us to study the limiting case
of the conditions (8.1.11) and (8.1.12) when ¢ — 0, before passing

to the proof of estimates.

Theorem 8.4.1. Ilet Pm have real coefficients and assume that

(8.1.1v) is valid for v =1 or 2. If xeQ and O#¢ €R 1isa

solution of the characteristic equation Pm(x, E) = 0 such that
A p(d)

(8.4.1) YR (x, &) 3/dx, = O
T " J

.but P;q)(x, £) # O for some Jj, it then follows that

(8.h.2) ¢ 2(m)

Sexé e/ dx, P‘J)u, £) P, ¢) +
J,k=1

J k_ é (k)(x, 3) P(J)(x, £) - By 4 (x, €) p;'ikhx,g))aw/axk :

Proof. Choose a real 17 such that

615 2ot 1), 4
1

and consider the equation

(8.4.14) - P (x, & +2n + o) =
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From (8ah-5) and the implicit function theorem it follows that there
is & unique analytic function z = 2z(¢) in a neighbourhood of 1 = 0

which vanishes for ¢ = O and satisfies (8.1.22). Since (8.4.1) is

valid we have either z(¢) = O identically or else

CTk + O(t

2(x) kel

wvhere ¢ # 0 and k > 2. In both cases it follows that we can let

T -0 on a curve with non real tangent at 1 = O so that 2z(t) -0
through real values. We may thus apply (8.1.1y) with & replaced

by & + z(t)y + Re 7N and o replaced by Im 1. When 1 —» O the
inequality (8.4.2) follows, for when the coefficients of Pm are real
the right hand side of (8.1.1v) is a polynomial in ¢ and o which

for ¢ = O reduces to the right hand side of (8.4.2).

Remark. If (8.1.1) or (8.1.2) is valid, the derivatives
P;é)(x, ¢) cannot vanish for all o with |a| >2 if & 1is real and
# 0. 1In fact, assuming that x = 0 and taking

10<x, £ >-p<x, N>
82T, ¥(px)

u(x) = e

b 1

with a >5/4, b <1, a-b <=

h C_(R) and o = <%
where V € o \Ry/ 8nd 0 =1, =79 5

we otherwise obtain a contradiction. The simple Proof, following
that of Theorem 8.1.1, may be left to the reader. If P;q)(x, £) =0

for all j and we assume instead of (8.4.1) that
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n.

Tk _
S Uy, ¢) sp/ax, a9/ax = o
. J
J, k=1
it is thus possible to apply the same reasoning as in the proof of

Theorem 8.4.1 to prove that (8.4.2) must be valid.

We proved in section 8.1 that the right hand side of (8.1.11)
is invariant. Hence it follows in particular that the right hand side
of (8.4.2) is inﬁariantrfor real t. We shall now discuss the
geometrical meaniné of the ‘positivity of the right hand side of (8.4.2).
Thus consider a real solution of the characteristic equation Pm(x, £E) =0
and the corresponding element of bicharacteristic strip given by the

equations

_ pld) -
dx, = P (x, £) at, &, = -va,j(x, ¢) at

where t 1is a parameter along the strip. The condition (8.4.1) means
that 49 = O along the bicharacteristic. Differentiating again we

obtain

n .
de.q%/dt2 =j’§il agq/axjaxk P;?)(x, ¢£) P;#)(x, £) +

S dv/a, ¢Fx, 1) axfar + BIR, 1) ag fan).
3,k m, J J m J

of, after using the equation of the bicharacteristic once more
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a/a? = § So/oxan P, 6) BWix, 1)
J,k=1 J

v 3w/ (0 0k, 6) 290k, ) - BN, e (et)).
1,5 m, j m m m, J

Thus the positivity of the right-hand side in (8.4.2) when (8.4.1)
is valid means exactly that @ is strictly convex along any bicharacter-
istic at any point where the bicharacteristic is tangential to a level
surface of . (Thus the restriction of @ to a bicharacteristic
has no stationary point other than minimum points.)

We shall now prove that the necessary conditions which we have
found for the validity of the estimates (8.1;1) and (8.1.2) are also
sufficient, if the condition in Theorem 8.4.1 is very mildly strengthened
by requiring (8.4.2) to hold for every real solution of the equation
Pm(x, ) = 0 satisfying (8.4.1) even if P;é)(x, £) should be equal'

to O for all j.

Theorem 8.4.2. Iet Q ©be a bounded open set, @ a real valued

function in C () with grad o(x) £ 0 when xeQ, and P(x, D) a
differential operator of order m with bounded measurable coefficients
such that the principal part Pm(x, D) has real coefficients belonging

to Cl(ﬁ). Assume further that

(8.4.5) T o%/axox p() (k)
L5 A ®/oxox, P Ci(x, £) BV (x, £) 4

m <
2 Fas 0 B 0 - 0 2e)) R0
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if xe€@Q and 0O # £ € Rn satisfy the characteristic equation

Pm(x, t) =0 and

(8.4.6) Pl(n'j)(x, £) /3%, = 0

=R

Then there is a constant K such that when v 1is sufficiently large

(8.,4-.7) ? T?_(m-lal )-llea |2 21’@ < Kf [IP(X D)u|2 2n- lI |2)e2'r¢d-x
<m

llecom).

Theorem 8.4.3. Assume that, in addition to the hypotheses of

Theorem 8.4.2, we have

(84.8) 5 Faamax, (s, ) Py, )

Jr,k=1

n
)™ 3 e, 00 20 - Bt 2 ) > o

if §=¢ + 11 grad 9(x), with xe'ﬁ,geRn and O;éTeRl,

satisfies the characteristic equation Pm(x, §) = 0. Then there is a

constant X such that for sufficiently large ¢

(8.4.9) %: Ta(my'al)-lleau|2e2T¢dx_S K ( |P(x,D)u|2 2T dx, u € d:(Q) .
af<m '
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Proof of Theorems 8.4.2 and 8.4.3. An obvious modification of

Lemmas 8.3.1 and 8.3.2 shows that it is sufficient to prove the two
theorems locally when P = Pm. Thus, assuming that O e and writing

Q. = (x; x eq, |x| <8}, we shall prove (8.4.7) and (8.%4.9) when

5
u € dZ(QS) and ® is sufficiently small. Since grad @(0) # 0 and

P € dw, ‘We can sgain change coordinates in a neighbourhood of O . so
that ¢ becomes a linear function, ®(x) = < x, N>.
With v(x) = u(x) TN ere u e dZG)) we now have as in the

proof of Theorem 8.3.1

2 _2(r+A)<x,N> |2 AN

fle(x:D)ul dx = f‘Pm(X,D-+ iTN)V

> {Ipm(x,n+iTN)v|2 - IPm(x,D-iTN)vlé} RS - F_(x,D,B)vvax

where
e - 2A<x, > — .
FT,A(x,g,g) =e~ (Pm(x,§+iTN) Pmlx,§+1TN) - Pm(x,g-er) Pm(x,§-1TN55 .

Here A 1is a constant which will be chosen later on in the proof in

order to ensure the positivity of a certain quantity. Note that the

J

coefficient of < in the expansion of FT in powers of 1t 1is of

A
>
order (2m - j; m) and is equal to O if j = 0. Since the coefficients
of P are real, we have FT A(x, £, t) =0 forreal &. Hence it
, .
1

follows from Lemma 8.2.2 applied to T FT A that there exists a form
s .

= _RE g (9) =
GT’A(x, D, D) = %? ™ G, (x, D, D)
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with continuous coefficients such that Gj(‘.']) is of order (2m - 2 - J; m-1)

and
- - = - 2 2(t+A)<x, N>
(8.4.10) fG_ ,(x,D,D) wvax = [ F_,(x,D,D)vv dx < [|P (x,D)ul% ()< W

Furthermore, (8.2.12) gives if 7 £ 0 (cf. (8.3.5))

‘ -1 S . )
(8.4h.11) GT’A(o,g,g) = 27 ilm ?Pm,J(O,g+1TN) P (0,e+itN) +

+ Im P (0,¢+i N)(iP(j)(O E+i N)+2A§;P(J)(O E+iTN)N )} ¢ €R
mP ,E+it : m, j'% it a ) 3 » n
In particular, we obtain when 1 — 0

(8.4.12) GO’A(o,g,g)_=2£’%=1[P$;(x,g) Pij)(x,g) - Pm’j(x,g)vPéljk)(x,E)']“l\fk+

n 3 n
+ (%P;J)(O,E) NJ)(EP;J3(0:5) + 2AEPIEIJ)(O,§) NJ)},ifg €R,
v 1 7 1 .

Pm(oxg) =0

We now élaim that there are positive constants A, C C2, C, such

1’ 3

that

12(m-1 - 2
(8.%.13) |e+irn| (m )gcl GT,A(O,E,E) + cele(o,gurN)le/lgﬁTN] +

2(m-1 .
+C3.'r( ),geRn,'teRl;g+1'rN.;éO;
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when the hypothesis of Theorem 8.4.3 are fulfilled we shall prove
(8.4.13) with 05 = 0. In Qiew of the homogeneity it is sufficient to
prove (8.4.13) when |t + itN| = 1. First note that the hypothesis
of Theorem 8.4.2 means that GO,A(O, £,8)>0 if P (0, &) =0 and

n .

E:P(J)(O’ t) Nj =0, £t € Rn and |§| = 1. Since the coefficient of A
m

1

i . . n
in (8:%.2) is h(EPI(nj)(o, £) Nj)e, it follows that we may choose A
M &

so large that
Gy al0s €5 8) >0 if € eR, P (0,8) =0, [t] =1.

From now on we keep A fixed. For reasons of continuity we can now

choose B so large that
: - 2
+ i = .
Gy, al0 &5 8) + BIP (0, )" >0 1f £ er, [e] =1

For a sufficiently large C we will have, again because of the continuity

of the terms in the inequality,

CT2(m—l)

2 |
G_ (0, &, &) + B[P_(0,6+1TN)|" + >0 if |e + 17N =1 .
T,A ' m

If Cl is chosen sufficiently large, the inequality (8.4.13) now follows

with C, = BC, ‘and C3 = CC,. - If the hypotheses of Theorem 8.k.3

are satisfied, and A is chosen as before, it follows that

C-T,A(O, tE, £) >0 if Pm(O, £ +i1N) =0, |& + i7R|] = 1
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which we previously only knew when .t = O. Hence we .can then choose B

so large that
G_ (0, &, ¢)+ B|P (O,§+irN)|2>O it |e + 17N =1,
T,A m

which proves (8.4.13) with 03 = 0.

2 .
We now multiply (8.4.13) by |¥(¢)|° and integrate, which gives

Vi_f(en)'nfléﬁer 2m-1) 156612 ae <cyfe, A(0,0,B)vv ax +

(8.h.1)  +cylllpy(0,0 + 1em) vl (1% + ¢, 2@ p|y|2 ax

where the first equality is a definition and, for the sake of brevity,

we have used the notation
2 -npgA 2 -2
(8.%.15) HIelH 2 = ()™ 12e)1= |e + 1on] ™= ae
Since GT A(x, D, 3) has continuous coefficients and is of order
2
(2(m - 1); m - 1), we can conclude as in the proof of (8.3.8) that if
€ 1is any given positive number we have

(8.4.36) fc_,(0, D, ) w ax < G, a(x, D, D) v ax + ¢ vi_l,ve:c;";(na)

if ® is sufficiently small. However, in 6rder to handle the-next term

in (8.4.14) we first have to prove a lemma, which gives a sharper
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result than Theorem 2.2.5 for the norm (8.4.15).

Lemma 8.4.1. Iet a(x) be Lipschitz continuous with Lipschitz constant
M when “|x| <&, that is, |a(x) - a(y)|l <M|x-y] if max (|x|,|y]) <5.
If a(0) = O it then follows that

(8.4.27) |Ila(, + 1xN) wl[| <Ms + | vl we lag)

where ||w|| 2 is the L2 norm of w.

Proof. In view of the identity
a(D,J + i'rNj) w = (Dj + i‘rNJ)(aw) - (Dja.)w

and the trivial estimates

2 -2 2. : . 2 2 2
(8.4.18) |2l 117 < 1onl™ lielly, 1110y + 38 2117 < e, £ e 19(R)
we have

. -1y
a0, + 1o8) w |11 < el + [o6] " a)wl, -

Since |al <8M in Qs and IDJa| < M, the inequality (8.4.17) follows.

End of the proof of Theorems 8.4.2 and 8.4.3. By hypothesis we

have

Pm(x, D +itN) = a%;:m a.a(x) (D + iTN)a
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where aa(x) € Cl(ﬁ), Since

Il(p + irN)P v||2 < Vo |8} =m -1,
it follows from Lemms 8.4.1 that with a constant C

‘ N )
(8.%.19) |HPm(O,D+i'rN)v - P_(x,D+itN)v] | |T <cE+|NT) VL, ve ¢ (ag) .
Using (8.4.19), (8.4.18) and the triangle inequality we now obtain
2 2

e, 0,0 + 1eN)vi|[” < 2 IIIIﬁm(x,DﬂrN)vl 12+ 2 [1|P, (0,D+itN)v-P (x,D+itN)v] ]

S _Q‘TNl -2 "Pm(x,D + iTN)V“i +‘ 202(5 + lTN‘ -1)2 vi-l .

Combining this estimate with (8.4.14), (8.4.16) and (8.%.10) we have

thus proved that when u € C:(Q) and u(x)eTQ’N>= v(x) we have

(8.4.20) (1-e-2¢,(8+|N| -1y2y Vn21-15 Clr'lflP(x,D)u| 2 2(T+A)<x, N>

2 21<x, > 2(m-1) [l 2 21<x, B>

+ 2C2|'rN| -2f|P(x,D)u| dx + CST Tdx .
! 2.2 1

When € -and & are so small that 1 - ¢ - 2C° d >§, the inequality

(8.4.7) follows from (8.4.20) for sufficiently large 1. If C3 = 0,

we obtain the inequality (8.4.9). This completes the proof.

Remark. A careful examination of the proof shows in fact that
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if (8.4.2) is valid for all real characteristics satisfying (8.k.1) and if
(8.1.11) is also fulfilled in case v = 1, then we have (8.1.v) for large
T, V= 1 or.2, (for some constant K3) if I_(V is replaced by Kv + €
..whére € > 0. The only place where a really different argument is needed
.is Lemma 8.3.1 where the functions @ 5 should not be chosen as a partition

of unity but so that » cpi = 1.
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8.5 Estimates for principally normal operators. In Chapter VI we

proved that existence .of solutions in Q of the differential equation
P(x, D)u = f (or, which is equivalent, some continuity of the inverse of

the adjoint of P acting on dZ«))) requires that

n —(-—y——
(8.5.1) ¢, ,(x¢) = 1% (P;J)(x,g)).Pm,j(x,e,) - By 5ixt) pd/(x,e)) = 0

if Pm(x,g) =0, ¢t € Rn, X e

It is also easy to see that (8.5.1) may be .obtained as a limiting case of
the inequalities in Theorem 8.1.1. In.proving estimates for non-elliptic
operators with non-real coefficients we need the following strengthened

form of (8.5.1).

Definition 8.5.1. We shall say that P(x, D) 1is principally normal
in Q Aif the coefficients of Pm are in Cl(ﬁ) and there exists a differ-
ential operator Qm_l(x, D), homogeneous of degree m-l1 in D, with coef-

ficients in CL(@ ), such that

(8.5.2)  Cpp (x,8) = B (x,6) Q_1(x,8) + Q1 (x,6) Bo(xsk) , € cR_.
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In particular, P 1is principally normal if sz-l(x’g) =0
identically, that is, if the .commutator of. P and its adjoint is of
order < 2m-2 (cf. Lemma 6.1.2). This is the reason for our termi-
nology. Note that every operator with cénstant or r_ea.l coefficients is
Principally normsl.

It is clear that Qm—l is uniquely determined by Pm unless Pm
and fm have a common factor, that is, Pm has a real factor. It
is in fact the lack of uniqueness of Qm-l when the coefficients of
Pm are real which made it possible to obtain somewhat stronger results
in section 8.4 than we are able to prove here.

We shall now study formally the limiting case of the conditions
(8.1.11) and (8.1.12) when o - 0. To do so Wwe note that if & =¢ + iTN,
with real t and &, satisfies the equation P (x, t) =0, then
the expression in brackets in the right hand side of (8.1.11) and (8.1.12)

is equal to

n n
S Porox e 2, 0) P (x,0) + (en)‘li Fa, 100 E D) -

J k=1
- B 0,0) B 0)- 1(B,(60) 150 + @ (x,0) P (x,0)
m 727 Tm,k m ‘m-1"""" Qm-l’ m’ :
In view of (8.5.2) this is now a polynomial in ¢ and T, hence has a
meaning also when T = 0. In the following two theorems we shall require

that it is positive at .all real characteristics where in section 8.4

-we .only needed this = hypothesis at .characteristics satisfying (8.4.1).
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This assumption is certainly not superfluous if Pm has no real factor and

it will not affect the applications.

Theorem 8.5.1. ILet Q be a bounded open set, @ a real valued func-

tion in €' (Q) with grad ¢(x) £ O when x € Q, and P(x,D) a princi-
pally normal differéntial operator of order m such that the coefficients
in the lower order terms are in I and those in Pm(x,D) are in Ce(ﬁv.
Assume further that with an operator Qm-l satisfying the condition in

Definition 8.5.1 we have

(0.5.3) 3 Fo/oxm 2 D0e) P me) rre & Eme) 80,0 -
J k=1 Jok=1 7 '

ot) B )y S22 ImzP‘J)(x,n 2 3 Qualut) >0
J
if xeQ and O.ﬁ 3 e.Rn is a solution of the characteristic equation
P (x,6) = 0. Then there is a constant K such that when 1 is suffi-

ciently large

(8.5.4) | IZ Tg(m-lal)-l 0% |2 2T 4x < Kf[IP(x,D)ulgﬂem.llui e}éer?dx,
al < m

o0
u € Cqﬁl) .

Remark. -When'the.coefficients are real, we may take for Qm-l -an ar-
‘bitrary operator with Purely imaginary coefficients. This gives back Theo-
rem 8.4.2 apart from the stronger differentiability assumptions used here,

for the inequality (8.5.3) may be satisfied where (8.4.1) is not fulfilled
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:'by choosing Qm_l(x,g ) = 1A ER;J)(x,g ) lacp/ax'j with a sufficiently large
positive A. This in fact gives an alternative proof of Theorems 8.4.2

and 8.4.3,

Theorem 8.5.2. Assume that, in eddition to the hypotheses of Theorem

8.5.1, we have

(8.5.5) ¥ g/ax dx 2 (x,0) 2F(x,0)

J:k=1

@0 5 @ 0 B0 - B0 2 ) >0

if §{ =¢ + it grad ¢(x), with x e ST_, ¢ eR and O£t eR satisfies

l’
-the characteristic equation Pm(x,C) = 0. Then there is a constant K such

that for sufficiently large 1

(8.5.6) ] IZ 2811 11521229 <k f1p(e, D)) 22y, u € @)
Al <m

Proof of Theorems 8.5.1 and 8.5.2. It is again sufficient to prove

-these theorems locally for a convenient .choice of lower order terms when ¢
is linear, @(x) = <x,N> . (See the proof of Theorems 8.4.2 and 8.4.3.)

Thus we take P(x,D) = Pm(x,D) +R l(x,D) where R . is an operator of

1
order m-l1 with Cl coefficients which will be chosen later. With

T <x,N>

u e d: (08) and v(x) = u(x)e we now form the trivial inequality

(8.5.7) [|P(x,D)u|2 &2F <N > . _ [12(x,D + 17N)v|? ax >

> f{le(x,D+i'rN)v| 2_|’P‘m(x,n—1rn)v|2 +2 Re P_(x,D+itN)v R _1(x,D+itN)v} dx .
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To the difference [ flPﬁ(x,D+itN)v|2 - lf"m(x,D-ir_N)vI 2]d.x we can apply
Lemma 8.2.2 as in the proof of Theorem 8.3.1. Thus there exists a differ-
‘ential quadratic form
C_ 2w
GT(x,D;D_) = ) 79 G(_J)(x,D-‘,-D)
o
with b coefficients and G('j) .of .order (2m-1-j; m), : -
“.+7: 0 .2 7 < { such that the right-hand side .of {8.5.7) is equal to

f GT(x,D-,ﬁ)w'r_ dx; thus
(8-5-8) ,fGt(x)D,-ﬁ)v; dx < flP(x,D)u|2 621‘ <oN> dx ,

and we have (cf. formila (8.3.5))

n
(8.5.9) GT(x,g,g) =21Im), Pm’k(x,§+i'rN) P‘iﬂ(x,gﬂrn) +
1

: . .. v o(k)
+ 2 Re P (x,t+17N)(1 § Pm’k

In order to be able to use (8.5.2) we .now choogse
(8.5.10) R (x0) = -q_(x,0) -1 5 e®(xp) .
o o Tmel T T Qm—l v ¢ "mk 00 .

Since by assumption the coefficients of Qm-]_ ré.re_.in Cl(5 ) and those .of
o _ A _ o

P are in C7(Q), the coefficients of R i -are then in cl(n). Further-

‘more, from (8.5.9), (8.5.1) and (8.5.2) 1t follows that G (x,8,¢) = 0, |

& € Rn, that is, G'(o)(x,g-;f) = 0. We can therefore apply Lemma 8.2.2 to
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the differential quadratic form' G(o)(x,Djﬁ), which gives the estimate

(8.5.11) IfG(°).(x,D,ﬁ)v?r ax| <¢ 3 N%]2 ax .
la] < m-1
Now write |
q;(x,D,B) - 22:_275 ¢{*) (4 p,5) .
We then have -

GT(X:D)ﬁ) = G(O)(X;D’B) + TG,:_(X:Dyﬁ) ’

and the coefficient of Y in G; is of order < (2m-2-j; m). Further-

more, G;(x,g,g) T GT(x,g,g) so that (8.5.9) and (8.5.10) give

' n
(8.5.12) G%(x,g,g) = 2{1 [Im'?L: Pm,k(x,§+irN) Pl(nk)(x,g+i1-N) -

- Re~Pm‘x,§+iTN) Qm_l(x,§+iTN)_] , E € Rn .

In any term in [ G;(X,D,ﬁ) vv dx which involves a derivative of v
of order m, we can make an integration by parts since the coefficients
are in Cl(ﬁ). In view of Leibniz' formula this gives one term where the

coefficient is differentiated and one where it is not; thus we obtain
[ 6:(x,0,D) v¥ ax = [ 6"(x,D,B) v ax + [G}'"(x,D,D) v¥ dx
Where

(8.5.13) | GUx,ELE) = Glx,k L)
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and ‘the coefficient of <7 in G is of order (2m-2-j; m-1) and the
coefficient of 19 in G;" is of order (2m-3-j; m-1). Hence we have
with a constant ¢

(8.5.14) | f 6t (x,0,Dpv ax| < et ) 12(’“‘1"0")_[ lDO‘vl2

]a|<n1

In view of (8.5.12) and (8.5.13), the condition (8.5.3) means that
Gg(x,g,g) >0 if 04t € R~ 1is a solution of the characteristic equa-
tion Pm(x,g) = 0; similarly (8.5.5) means that G;(x,g,g) >0 if

€ =¢ + itN with ¢ ¢ R, O £t eR, and ¢ satisfies the equation

lJ

Pm(x,g) = 0. We therefore obtain the estimate (8.4.13) with ¢ re-

T,A
Placed by G;, the constant C5 being 0 if the hypotheses of Theorem
8.5.2 are fulfilled. The rest of the proof of Theorems 8.4.2 and 8.4.3
now applies without change except for the fact that instead of (8.l. 10) w

now have
(6:515) ¢ J67(x,0,0) v¥ ax = [o_(x,D,5) v ax - a(°)(x,0,5) vi ax -

= 7JG" ' (x,D,D) wv dx.S.fIP(x,D)u|2e2%'<x’Nj>dx +C Vi_l
in view of (8.5.8), (8.5.11) and (8.5.13). (We have used the notation

Vm-l introduced in (8.4.14) and the obvious fact that the right-hand sides
of (8.5.11) ana (8.5.14) can be estimated by a constant times vfl l.) The

conclusion of the proof still proceeds as before, however, and may be left

to the reader.

8-41



8.6 Pseudo-convexity. Iet V¥ e 02 in a neighbourhood of a point %°

and assume that grad ¥(x°) # O. Then the equation
(8.6.1) ¥(x) = ¥(x°)

defines a non singular level surface in a neighbourhood of x° with orien-
tation: we call the part of a neighbourhood of x° where v(x) > ‘ll(xo)
(¥(x) < W(xo)) the positive (negative) side of the surface. If *1 defines

the same surface with the same orientation, we have at the point x° with

a positive A

Il n

. 2 2
grad Wl =\ grad ¥ ; . EL (o *l/axjaxk)yjzk =X Ez (o W/bxjaxk)yjzk if
J, k=1 J,k=1
n n ’
{1: zjb‘l’/axj =§yja‘¥/8xj =0.

This shows that the following definition is independent of the function V¥

defining the oriented surface (8.6.1).

Definition 8.6.1. Ilet P be either elliptic or principally normal.

The oriented surface defined by (8.6.1) will be called pseudo-convex with re-

spect to P at the point x if

-

- n

| 2 () (5 ¢) BK) o pld) ey 36
®62) T e B 00 B0 4 Re % (Blylnt) B ()

- By (08) B9 8))00/0x, > 0
if 04 ¢t € R satisfies the equations
= p(d)
(8.6.3) P (x,£) = 0, §PmJ (x,g)awy/axJ =0.
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The surface is called strongly pseudo-convex with respect to P at the

point x 1if, in addition,

(8.64) T 4/ 3%, 29 (, )21 ()

Jyk=1

n _( _)__ ———cr——
+ (211‘)-12 Pm k(x,;) Pmk (X,C) = Plflk)(X,g) Pm k(xJC)) > O
T ?

if £ =8 + 17 grad ¥(x), with £ e R and O£ 7T ¢ R, satisfies the

equations
e p(d)
(8.6.5) P(x,8) =0, §Pm (x,£)3¥/3x, = 0 .

Remark 1. When m =1 there is no difference between pseudo-convex-
ity and strong pseudo—convexity.‘ In fact, (8.6.3) and (8.6.5) are then
‘equivalent, and (8.6.4) reduces to (8.6.2) since Im T Ph,k(x,§)P£k](x,§) =0
when Ph(x,§) = 0, in view of the definition of a principally normal oper-

ator.

Remark 2. If Pm(x,N) = 0, the condition (8.6.3) is fulfilled by
€ =N, and condition (8.6.2) with & = N implies that (5.3.10) is fulfilled

with P replaced by either Re P or ImP .
m ) m m

Remark 3. Every surface with nbrmal N af x 1is (strongly) pseudo-
convex there if and.only if there is no real 't . not proportional to N -sueh
that the equation Ph(x,E + TN) = 0 has a real (complex) double zero T. |
(This is the condition required by Calderéh [ ], which shows that Theorem

8.9.1 contains his results.)
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We shall now. prove the~stability;of the notions introduced in Defi-

nition 8.6.1.

" Theorem 8.6.1. ‘Let P be either elliptic or principally normal in
a neighbourhood ofr‘xo and assume that'tﬁe coéfficients of Ph are in Cl
there. Further, let ¥ be's functioﬁAwifhl_grad w(x°) #£ 0 which is in
T in a neighbourhood of x°. If the surface (8.6.1) is (strongly) pseudo-
convex with respect to P at xo, there thon exists a neighbourhood £

of x° and a positive number € such that every o € CQ(Q) for which
a, '
D@ -¥)] <e in 0, |of <2,

has (strongly) Pseudo-convex level surfaces with respect . to P everywhere

in Q.

Proof. Assume for example that .P is principally normsl and that the
surface (8.6.1) is strongly-pseudo-convex at 'xq; ‘thébother three cases in
the thporem are still simpler and may be left to'thevreader. Choose Qm-l
according to (8.5.2). fThe aésumptiod in the theorem then means that the

polynomial in & and = given by

.(8.6m6) } »ii 8 \/ox axk P(J)(x ¢) P( ](x,

- 3,k=1

.
”-1um§ L(xt) BLE ) - re 2 (x,c) 'qn' (x 551 .

84y



’ n
where §{ = & + 1TN, 1s positive when P (x,C). =X PlflJ)(x,g)N =0, 1f
’ 1

x=x°, N=n-= grad ¥(x°) and ¢t £ o, §eR €R Infact (866)

.
‘reduces to (8.6.2) when T = o (cf. (8.5.3)), and'if T £ 0 1t 1s obyious

that (8.6.6) reduces to (8.6.4). Now let x - ((&,7); lgl =.1} and

let A be the closed subset of I where P (x ,§+lTN )=}I P(J)(§+1TN )N

Then the polynomial (8.6.6) has a positive 1ower bound in A when x = x°

and N = No; hence we can find a neighbourhood B of A in I wvhere the
Polynomial still has & lower bound. Since B 1is a neighbourhood of A, it

follows that
.0 o @ (1) oy .0
[B,(x°, & + 1709 | | T oD e iw8°) N9
m T m J

has a positive lower bound in the complement B' of B in I. If Q0 and

€ are sufficiently small, it thus follows that the equations
s p(d).
B (x,& + 17 grad ¢(x)) = me (x,& + 1T graa .cp(x))bq:/bxj =0
. 1

-have no solution (§ ;l') € B' and that the polynom:lal (8 6.6) with

s} #/bx axk replaced by 3% ¢/ dx Bxk, with x € 2 and N = gra.d o(x), 1s

still positive 1n B. This proves the theorem V
-We next study the relation of psetxio-convexity, to the conditions under

which we have obtained estimates in sections 8.3 and 8.5.

- 8-4s



Theorem 8.6.2. Let P be principally normal and let ¥ € Cz(ﬁ)

have pseudo-convex level surfaces in the compact set §. Then the hypothesis
(8.5.3) of Theorem 8.5.1 is fulfilled by @ = exﬂf provided that the constant

A is chosen large enough.

Proof . Replacing ¢ by ex'\v in (8.5.3) and multiplying by X-le-M’

afterwards, we find that we have to prove that

. 0 .
(8.6.7) | ?Pi'j)(x,ﬁ)a\lf/axj |2 + Zl Bz‘lf/axjakai‘])(xﬁ) -Iiflk)(x,E) +

Jrk=
! n
R (P;f;(x,&) B 8) - 2, (08) BV (x,8))00/0x, +

+Im§P(J)(x £ )ov/dx -Q-m (x,€) >0
T m ? J w17

if xe®, Of¢t e R, Pm(x,ﬁ)_ =0 and M 1is large enough. To prove
this we note that the set of (x,§') with x € and £ ¢ Rn such thét

le] =1, Pm(x,ﬁ) = 0 and the inequality opposite to (8.6.7) is valid, is
a compact set, decreasing with A. If it is not void for large A, there
hence exists an x ¢ Q@ and a € e R such that lel = ‘l, Pm(x,§). =0 and

(8.6.7) fails to hold for every \A. But then it follows that
5 p(d) - n

z -Pm (x,E)B\V/ij = 0 so that (8.6.7) is valid for every A\ by assumption.
l .. - . : .

This contradiction proves the theorem.
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Theorem 8.6.3. Let P be either ellipfic, have real coefficients or

be-principally normal, and let V¥ € 02(5) have strongly pseudo-convex level
surfaces in 0. Then the hypotheses of Theorems 8.3.1, 8.4.3 or 8.5.2, re-
spectively, are satisfied by ¢ = eXW if A is sufficiently large.

The proof is essentially a repetition of that of Theorem 8.6.2 so it
may be left to the reader.

We shall now discuss the local existence of functions with pseudo-convex
level surfaces.

Theorem 8.6.4. If P is principally normal in a neighbourhood of x°

and
(8.6.8) i lprlf‘)(x°,g)le $0,0f8¢eR ,
. 1

it is possible to find a function with pseudo-convex level surfaces in a

neighbourhood of xo.

Proof. In view of Theorem 8.6.1 it is sufficient to prove that we can
2
find ¥ € C with grad W(xo) # 0 and a pseudo-convex level surface at
o )
X . To do so we just have to choose i
{

¥(x) = Alx - x°|2 + <X - xo,N.>

where N £ 0 is fixed and A is chosen sufficiently large afterwards.

8-47



Remark. Even if (8.6.8) is fulfilled for every x° e 8 it does not
follow that there exists a function with pseudo-convex level surfaces in the
whole of 2. In fact, let Pm have real coefficients. Then there does not
exist any function ¢ with pseudo-convex level surfaces in § if there is
a closed bicharacteristic contained in 9. For on such a curve the function
¢ must attain its maximum at some point x. Then ¢ 1is stationary at x,

. that 1is, the bicharacteristic is a tangent to the level surface of @ there.
Since ¢ must have d non positive second derivative along the bicharacter-
istic at the maximum point, it follows from the discussion at the beginning
of section 8.5 that ¢ 1is not pseudo-convex. — An example where this remark

applies is the first order differential operator

P(x,D) = XD, - x,D,

in the set 2 = {x; 1 < x 2 2 < 2}. Since the bicharacteristics are the

1 + X

2

5 .
circles x, + x, = constant, we cannot find any pseudo-convex function in

1 2
the whole of & although (8.6.8) is fulfilled for every x € 8, (A more
sophisticated form of this example where Q 1is simply connected can easily
be given in the three-dimensional case; see Tréves [ ]).

It is also interesting to note that there may exist functions with -
‘pseudo—convex level surfaces even if (8.6.8) is not fulfilled for every
x € . For example, consider the Tricomi operator

2 2

P(x,D) = x,D.7 + D",
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If ¥(x) = -X5s the left hand side of (8.6.2) reduces to m2512, which is

>0 if x2§12 + §22 =0 and & = (§l,§2) #£ 0. More generally, we can im-

prove Theorem 8.6.4 as follows.

" Theorem 8.6.5. Assume that ‘P is principally normal in a neighbour-

hood of xo and that there is a vector N # 0 such that

n
(8.6.9) Re?Pm’k(xo,g) Plflkj)(xo,E) Nj <0 if 04 ¢t ¢ R and

Péj)(xo,E) =0, jJ=1, ... , n.

Then there exists a function V¥ whose level surfaces are pseudo-convex with

respect to P 1in a neighbourhood of <°.
Proof. We only need to take
0)2 o
¥(x) =Alx - x| +<x -x N>
with a sufficiently large A, and use Theorem 8.6.1.
Remark. When P, has real coefficients, the condition (8.6.9) has a
simple geometrical meaning. In fact, consider a solution §° of the egua-

tions Pﬁq)(xo,Eo) =0,J=1, ... , n, and the bicharacteristic

dxj/dt = Plg'j)(x,ﬁ) R d§j/dt-= -Pm’j(x,ﬁ)
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with initial data x = xo, ¢ =t° for t=0. Since (8.6.9) gives that
P J(x°,§°) # 0 for some j, this 1s a smooth curve in R® x R® with
J

parameter t. Now we have dxj/dt =0 when t =0 and since

2,2 B _(5), . e o(Jk)
d xj/dt = k);l Pm,k(x,é) dxk/dt + kgl B (x,8) délet ,

AN

it follows that for small t

<}
x, = -3 BIFGC0) B L (0 4 o)
k=1 ’

It follows that the projection of the bicharacteristic into £, that is,
the curve obtained by eliminating &, has a cusp at x° whose tangent from

xo along the curve has the coordinates
o _(3k), o ,0 0,0
- zaPh (x,t7) P;,k(x ) ,3=1, ... ,n.
k=

The hypothesis of Theorem 8.6.5 thus means that all such cusps, if any, have

to lie in the interior of a half space through x°.
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8.7 Estimates, existence and approximation theorems in H(S). In
this section we shall prove that the L° estimates (8.1.2) lead to a
priori estimates in the norm " || (s) for every real number s. (See sec-
tion 2.4 for the definition.) By duality this will give an existence the-

ory for the adjoint operator.

Theorem 8.7.1. Iet P be a principally normal differential operator

of order m with coefficients in c°°(n) > and assume that there exists a
function ¥ € C2(@) with grad ¥ £ 0 in @ and with pseudo-convex level
surfaces throughout Q. If u e &(2) and P(x,D)u-="*f ¢ H(s) it then
follows that u € H(s +m-1)’ and to every reai number s and every compact
set KZ Q there exists a constant Cs,K such that

(8.1.1) Tl gy < G x(IPGRDN )+ Iull g ) 5 12 we E10E)

Proof. ILet Q' be an open set with compact closure conteined in Q,
chosen so that KCQ', In view of Theorem 8.6.1 and Borel-lebesgue's lemma
we.can approximate ¢ .in 2 norm with a function ¥' e () so closely
that grad ¥y' £ 0 in Q! and the level surfaces of ¥' are pseudo-convex
in Q1. Using Theorem 8.6.2 we.can then choose a constant A so large that
Q = e'M! satisfies the hypothesis of Theorem 8.5.1 in Q°'. Thus e (@)

and we have
(8.7.2) Tl | Y 10%I® €™ ax < c(f|P(x,D)u]Z 2™ ax +
| = m-l _

2m-lal)-1
|| <m-2

+ [15%]% 627 ax}, u e (o).
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9(x)

Now write v{(x) = u(x)e and introduce the differential operator

PT(x,D)v = eTcPP(x,D)u =-.éTq)P(x,D)(ve-TcP) .

It 1s clear that the coefficients of P_r are polynomials in t, and that

more precisely

(8.7.3) P (x,D) = % a.a(x)-»:J *
T J+|a <m J

where ay is in C (). It then follows from (8.7.2) that, with another

constant C, we have

8.74) 3 2 <ol ey vy Amlolypg2
al = m-1 : ‘ la 51!1-2

veCO:)(Q')

In fact, Du =-e *° I%v + terms of lower order.
Wé now assume that we have an element wu ¢ g'(K) such that P(x,D)u
=1 e€ H(s). Under the additional assumption. that we already know that

uweH we shall then prove that u € H and at the same time
(s+m-2) :

(stm-1)

".obtain an estimate (8.7.1). "In doing so we note that our assumption means
- ot®

that v = e u € H(S"'mde)

We shall use the methods of section 2.4, choosing a function X € CZ (Rn)

satisfying the hypotheses of Theorem 2.4.1 and such that
(8.7.5) K+esuppXCQ', 0<e<1.

. 8_52. .
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Since. supp v<. K we then have v * -Xe € Cz(Q') if 0<e <1, hence

(8.7.4) gives when 0<e < 1

(8.7.6) « ¥ @y 2 < clall(e_(x,p)v)% |12 +

al=m-1

2. . _2(m-|af )-1 o 112
+ 2|p_(x,D) (v )=(P_(x,D)v)® |3 +Ial §<jm_21. (%) x€||2.
: -2s 2, 2\-1
We now multiply both sides by e (1 +8%/¢%) de/e .and integrate over ¢
from O to 1. In view of (2.4.9) this gives
2

‘ ' 2, 2
(8.7.7) = N g m_l(q]_“Dav"(s—l),S -|p V"(s_l) ) < 0(202|IPT(X’D)VH(S-1_),5 +‘

+ B + C2 |a| E m_‘212(m-|a' )"l“Dav"(s-l),SE)‘ ,

where
: 1
(8.7.8) B=2C, OflIPT(x,D)(v*xe) --(PT(x,D)v)*Xe"g 281 + 872 ae/e .

In order to estimate the term B, ~ which is the effect of the variation
of the coefficients, we use the exbreésion for I_)'r given in (8.7.3). We
may assume that ag € C:(Q) since without changing these coefficients in Q!
we can multiply them by a mnction in CZ(Q) which is equal to 1 in Q°'.

Then it follows from Theorem 2.4.2 that
o o i 2 .28 2, 2,-1
(8.7.9) J I'IaJ-r (D v)*Xe) - (a.J-r D v)-)(-)(eu2 e (1 +8/€") de/e
o -
23 2
-<_ C5 T “Davn(s-2)’6 .
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I1Ir |a| £ 0 we can write - DJD‘3 for some B with |B] = |o|-1 and
o TN .
obtain ||D v“(s-2),6 <|p v“(s-l),&' From this remark and (8.7.9) it thus

follows that the expression B defined by (8.7.8) has the estimate

2(m-lal -1)y. 2 2
(8.7.10) B<C, Y T I g0y 6 * 7 M2y
|a| < m-1
where Cl+ is another constant, depending on s but independent of v and

of &. Using (8.7.10) in (8.7.7) we now obtain with another constant C

_(897.11) T Z “quu(s_l),sz S C(“PT(X’D)v“(s-l)’BE + z "DaV“(s_l),82 +
|a| =m-1 || =m-1 |

2

DI Lo YRR

|a| < m-2

Now choose T >-2C .and move the first sum in the right-hand side of
(8.7.11) to the left. We then obtain, using the identity (2.4.2), with still

.another constant C

(8.}.12) ,T"v“(s+m-2):52 = C["PT(X’D)VH(S—D,SQ +

2

)

m-2
+ JZO Tg(m.J)-l“V“(s’rj-l),a2 + 7‘2m||v||(s-2),8

Recalling that we have assumed that v ¢ H and that PT(x,D)v e'H(s)

(s+m-2)

we now let & -0 in (8.7.12). In view of (2.4.4), this gives

: m-2
(8.7.13) tlIvll (g g q)” < CLIR (1,0 ) -+Jz-12‘““3"1||v||s+f vl gy
=0
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where C is still another constant. Since s+m-2 2 8-1, this proves that

0

veH and introducing v = e''u we obtain (8.7.1) in view of Theo-

(s+m-1)
rem 2.2.5.

Finally, assume that we only know that w e £'(K) and P(x,D)u € H(s)'

Choose a number ¢ such that u € H Then it follows from what we

(o+m-2)"

have proved that u H(o where o' = inf (0,s). Iterating this con-

'+m-1)
-clusion a finite number of times we obviously obtain. u € H(s +m-1)" The

proof is complete.

Corollary 8.7.1. ILet the hypotheses of Theorem 8.7.1 be fulfilled and

let ue E'(K) satisfy the equation P(x,D)u = 0. Then u ¢ CZ(K) and
the set of all such functions u is finite -dimensional for every compact

set KCQ.

Proof. That u € C:(K) follows immediately from Theorem 8.7:1. From

(8.7.1) we obtain

lhall 1y < cllull

for all such u. Hence it follows from Theorem 2.2.3 that the functions u
in the theorem form a locally compact Banach space with the norm ,“ull(o) .

Hence the space is finite dimensional, which completes the proof.

Theorem 8.7.2. Iet the hypotheses of Theorem 8.7.1 be fulfilled and

let Q' be an open set with Q' compact € Q. ILet £ H(S) and assume

that
(8.7.14) | £(u) = 0
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if ue d:(63) and P(x,D)u = O. Denote the adjoint of P by °P, that

is,

[ [P(x,D)u)v dx = fu tP(x,D)v dx; u,v € dgﬁl) .

such that tP(x,D)v =f in Q'.

Then one can find v € H(s+m—l)

Remark. It is obvious that P and tP satisfy the hypotheses of

Theorem 8.7.1 at the same time, the principal part of tp being (-1)um(x,D).

Hence the theorem applies to P as well as to tP.

Proof . of the theorem. Ilet Uy, «eey Ugp be a basis in the finite

dimensional space of solutions with support in 57 of the equation

P(x,D)u = 0. .(See Corollary 8.7.1) Choose J functions Vs «ee 5 Vg odn
-dZ(n') so that
fujvk dx =0 if J £k, and =1 if J=k; J,k=1, ..., J .

We then claim that there is a constant C, depending on s, but not on u,

so that
2 _ .2 2 o= '
(8.7.15) "u"(_s) <¢C "P(X’D)u"(-s-m+1) if u e Co«)’) and

) u v, dx

1l
o
-
Ce
[}
o
-
.
&

In fact, if this were not true, there would exist a sequence u, € dZ(ﬁ“)

with "uv"(_s) = 1 such that | w v, dx =0, J

3 1, ... , J, and
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(8.7.I6) ;"P(X’D)uv“(-s-nﬁl) -0, v 5o ,

Since "uv“(-s) = 1 .we may assume that u, converges strongly in H(-s-l)
for ‘the sequence is pre-compact .there in view of Theorem 2.2.3. The limit

-u .cannot be equal to O, for if "uv"(s-l) -0 it follows from (8.7.16)
.and (8.7.1) that ||u ||( -0, which contradicts our assumption that
'"uv“(-s) 1 for every v. But the limit u is in @'(Q') and satisfies
the equation .P(x,D)u== O, hence is in C: and we have fqu dx = O,

J=1, ... , J. Thus u must be O after all and this contradiction proves

(8.7.15).
Now consider the linear fbrm

(8.7.17) P(x,D)u »f(u) , u e C:(ﬁ') .

[« - Jpp—
‘When .u € CO(Q') and fuyj d&x =0, §=1, ... , J, we have in view of

(8.7.15)
(8.7.18) le()] < cllell gy IPGe)ull i)
since |f(u)| < "f"(s)uu“ . -To see that (8.7.18) 1is valid for an arbi-

trary u € C (Q') _we now only have to apply (8.7.18) to u - E:u. / uv, dx.

From Hahn-Banach's theorem and (8.7. 18) it follows that the linear form

(8.7.17) can bve extended to a continuous linear form on H(-s mt1) that .
is, there exists an element v ¢ Higep-1) ¥ith "v‘"(s+m-l) < ,Cllfll(s) such

that

£(u) = v[P(x,D)ul, u € c:(a') .
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But this means precisely that tP(x,D)v =f in Q', which completes the
proof.
We shall now prove an approximation theorem for the operator P(x,D)

("The identity of weak and strong extensions").

Theorem 8.7.3. Let the hypoﬁheses of Theorem 8,7.1 be fulfilled, let
u e é'(ﬂ) and assume that for two real numbers s and .t we have

(8‘,7.19) u € H(S)’ P(X;D-)u € H(t)

If X e C:(Rn), /X d&x = 1 end we set Xe(x) = e ™ X(x/e), it then fol-

lows when € —» O that
* ; : *
(8.7.20) wX_ >u in H,(s)’ P(x,D)(u Xe) -P(x,D)u in H(t)

‘Bemark. Since P(x,D)u e H(y)» 1t follows from Theorem 8.7.1 that
u e H(t+m-l) and since u € H(S) we have P(x,D)u € H(s-m)' The most

interesting case is therefore when t+m-1 <s and s-m <t, that is,

tim-1 <s < t+m ,

)

for othervise .one h_y;i_othesis (8.7.19) implies a strengthened form of the

.other. However, the general formulation will be useful below.

Proof of Theorem 8.7.3. That u * X  —u in By follows from

Theorem 2.2.9. Next note that P(x,D)u ¢ H(t) implies that u € H(tﬂn_l)

in view of Theorem 8.7.1; hence Dau € H(t-l) when |a| < m. Writing
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P(x,DJu = £ and P(x,D) = l}} é’(x)ﬁx, where the coefficients may be
. al <m .

changed outsidé a neighbourhood of the support of u so that they are in

K-
co(n), it thus follows from Theorem 2.4.3 that

P(x,D)(uw ) - £%_= ¥ [a((Du) *x_) - (aDu) *X_] >0
al <m

in H(t)' Since f *-X€ —»f in H( when € -0, 1in view of Theorem

t)
2.2.9 again, the proof is complete.

By duality the following theorem results from Theorem 8,7.3.

Theorem 8.7.4. ILet the hypotheses of Theorem 8.7.1 be fulfilled and

let

(8.7.21), | )(a), ®p(x,D)v € (t)(n)

~N

Then there exists a sequence vV € C:(Q) such that when y —»
(8.7.22) v, oV in )(9), P(x,D)v& —+tP(x,D)v 4in (t)(ﬂ)

Remark. The most interesting case is again that where s < t+m. (ce

remark to Theorem 8.7.3.)

Proof. 1In the direct product space

loc loc
H = H 2)(0) x B (@)
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we consider the linear subspace G of all pairs (v,tP(x,D)v) belonging
to the space and denote by G; the set of such pairs with v € Cz(ﬂ).
Since H is metrizable we only have to show that the closure of Gm‘ is
equal to G. Thus consider a continuous linear form L on H. It is ob-

vious that it can be written in the form

H a,(vl,ve) S< L,V > - <PV, >

Where f) € H )(Q) and f, ¢ H( t)(Q), and < fJ,Vj > 1is the. .contin-

uous extension of the bilinear form f fj vy dx. (Cf Theorem 2.2.8.) If

L. vanishes on G°° we then have .
<fl,v>-<f P(xD)v>,veC(Q),

that is, P(x,D)f =f,. If we take X as in Theorem 8.7.3 and set

£y = £, ¥ X and f = P(x,D)f‘ it now follows that fZ ¢ c:(n) ‘and
that

€ € .
f2 —9f2 in H(-t)’ fl —;fl in H(-s) when eA—’O .

The support of fé obviously remains in a fixed compact subset of Q. If

v e Hlos(ﬂ) and.1%P(x;D)v € H%

t)(ﬂ) ve have by definition of 'P that

. _
< fi,v > - < £5 P(x,D)v=< fi-P(x,D)fZ,v >=0,

which in the limit when € -0 proves that the linear form I, vanishes
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at (v,tP(x,D)v), hence in the whole of G. Hahn-Banach's theorem thus

gives that Gm' is dense in G, and the proof is complete.

Remark. Similar results with convergence in a topology which is more
-restrictive at the boundary may be obtained by a slight»change of-theb
-methods when the boundary is smooth. See H8rmander [ ].

Also for the homogeneous equation tP(x,D)v = 0 we can obtain a simi-
‘lar approximation theorem. (Nofe‘that it is much weaker than those proved
in section 3.4, but that on the other hand no restriction on the domain is

required here.

Theorem 8.7.5. Let the hypotheses of Theorem 8.7.1 be fulfilled and

let QS, Qm be open subsets of @ such that 5; is compact and contained

in Q . Set
s
N ={v; vedl tP(xD)v=O in Q}
's ’ (S)J ) » g’ ?
which is a closed subspace of H(S), and set
N ={v; veH tP( D)v =0 in Q}
0 ’ (m)) X, v = in o

where H(m) € (D H(k)c: C . Then the closure of . N, in. H(s) contains

N .
8 . .
Proof. a) Choose open sets Qs+l’ Qs+2’ .+« -with compact closures
.such that

g 28501 204y 2 Qs+2 — Dn@
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and define Nk in the same way as Né for k > s. Then it is sufficient

to prove that the closure of N\

e+l for every k > s.

in 'Bk contains Nk

For given v ¢ Ns we can then recursively find vy € Nk’ k > s, so that

v.=v and
s

-k

where € 1s any given positive number. It follows that

jom

exists 1in every H(k)’ hence v, € N&, and

o0
- J
|IVS"V°°"(S) = | Z J+l -V "(s) € z 2
which proves that the closure of N, contains NS.

b) To prove that the closure of Nk 1 contains Nk we let

f be any element in H( which is orthogonal to Nk+l; in view of Hahn-

-k)

Banach's theorem we only have to prove that £ 1is then orthogonal to Nk'

Since N is the set of a1l v ¢ H such that v[P(x,D)u] = 0 for

“k+1
every u € C (Q

(k+1)

s1)s .the orthogonal complement .of N, 1n H(-k-l) ‘15

the closure in H( k-1) of (P(x,D)u; u e C (Qk+l) Hence there exists a
vsequence u, € c (Qk l) such that
(8.7.23) P(x,D)uv—)f in H(_k_l)
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at (v,tP(x,D)v), hence in the whole of G. Hahn-Banach's theorem thus

gives that Gm' is dense in G, and the proof is complete.

Remark. Similar results with convergence in a topology which is more
-restrictive at the boundary may be obtained by a slight.change of -the
-methods when the boundary is smooth. See HYrmander [ ].

Also for the homogeneous equation tP(x,D)v = 0 we can obtain a simi-
lar approximation theorem. (Noﬁé.that it is much weaker than those proved
in section S;h, but that on the other hand no restriction on the domain is

required here.

Theorem 8.7.5. Let the hypotheses of Theorem 8.7.1 be fulfilled and

let Qs’ Om be open subsets of 2 such that 5; is compact and contained

in Q@ . Set
s
N ={v; veH tP(x D)v =0 in @}
s ’ (s)} > » s J
which is a closed subspace of H(s)’ and set
N ={v; vel t1>( D)v=0 in Q}
o Vy V (m), X,D)v = n ®

© 0 '
where H(é) € (D H(k)c: C . Then the closure of N in’ H( ) contains

oo S

N. . :
s . .
Proof. a) Choose .open sets Qs+l’ ﬂs+2, .+. with compact closures
_such that

s 20501 29540 2 9s+2 . DQ@
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and define Nk in the same way as Né for k > s. Then it is sufficient

to prove that the closure of Nk 1 in 'Bk contains Nk for every k > s.
For given v € NS we can then recursively find vy € Nk’ k > s, so that

v. =v and
S

-k
Migya - Villgy < €2

where € 1s any given positive number. It follows that

exists in every H(k)’ hence v € N, and

[+

oy allay = 1T vyl < e T

which proves that the closure of N, contains NS.

b) To prove that the closure of Nk 1 contains Nk we let

f be any element in H( which is orthogonal to Nk+l; in view. of Hahn-

-k)

Banach's theorem we only have to prove that f 1is then orthogonal to Nk'

Since N is the set of a1l v ¢ H such that v[P(x,D)u] = 0 for

“k+1
every u € C (9

(k+1)

the orthogonal complement of N

k+l is

in H
(

k+ 1 -k-1)

the closure in H( k-1) of {P(x,D)u; uecC. (Qk+l) Hence there exists a
‘sequenee u, € c (Qk l) such that
(8.7.23) P(x,D)uv—>f in H(_k_l)
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Let ul, ooy uJ..be a basis for the solutions of the differentisl

equation P(x,D)u = O with support in & (cf. Corollary 8.7.1) and

kt+l

J k _ , '

k+l) so that [ u'v ax = SJk (Kronecker's

delta). Since an inequality of the form (8.7.15) is valid for every s,
J

1t then follows that u - $ ud fuvvJ dx has a limit u € H
1

J 0
choose vl, cee , V€ CO(Q

(m-k-2 ) with

_support in 5k+l’ and from (8.7.23) it follows that P(x,D)u =.f. Since

fe H(—k) by assumption, it follows from Theorem 8.7.1 that u € H(m-k-l)'
Now choose X as in Theorem 8.7.3. For sufficiently small € we then

have u® =u * X_ e C:(Qk), and P(x,Du® »¢ 1in H(_ when € - 0.

k)
It v e Nk we thus have

: € : €t
<f,v>= lim < P(x,D)u ,v > = Jim <u’, P(x,D)v > =0 .

The proof is complete.
As an application of this approximation theorem we can now give a

supplement to Theorem 8.7.2.

Theorem 8.7.6. Let the hypotheses of Theorem 8.7.1 be fulfilled and

_let Q' be an open set with Qr compact and contained in- Q. Let

Q0
f e C (2) and assume that

[fudx =0

if ue C:'(S_l") and P(x,D)u = 0. Then there exists a function v € cT(a)

such that tP(x,D)v =f in Q.

Proof. Since we may multiply f by a function in CZ(Q) which is

equal to 1 in Q', it is no restriction to assume that f ¢ Cm(Q)CH .
_ o ()
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Let Q" be an open set with compact closure C Q@ such that Q" DQ!

and .every solution of the &ifferential equation P(x,D)u = O with sup-
port in 5" has its support in Qr, (This choice  is possiblevsince there
are only a finite number of linearly independent solutions.) 1In view of

Theorem 8.7.2 we can then find v € H(k) such that

tP(x,D)vk =f in 9", k=1, 2, ...

Since tP(x,D)(v

k+l-vk) =0 in Q", it follows from Theorem 8.7.5.that
there is a function W, € H(m) such that tP(x,D)wk =0 in Q' and
-k
(8.7.24) “Vk+l -V - wk“(k) <27 .

It then follows that

k-1
(8.7.25) v = lim (v, - % ’.’,j)

exists in every H(s)' In fact, if s 1is a positive integer, we have

k-1 5-1 o
lim(vy - % wJ) =v, - % vy +§ (V1 = Ve = %)

‘where the series is convergent in H(s) .since it follows from (8.7.24)

‘ -k | |
that ‘"vk+l - v -,wk"(s)'< 2", when s <k. Hence the function v
defined by (8.7.25) is in H(c«o) and since it is obvious that tP(x,D)v =f

in @', this completes the proof.
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We finally give a result on the existence of fundamental solutions
which is similar to Theorem 7.2.1. (We do not know how to prove a stronger

result analogous to Theorem 7.3.3.)

Theorem 8.7.7. Let the hypotheses of Theorem 8.7.1 be fulfilled and

let Q' be an open set with compact closure contained in 9. Assume that
neither the differential equation P(x,D)u = O nor the equation tP(x,D)v=O
has a solﬁtion ﬁ O with support in Q. Then there exists a linear map-

ping of Lg(Q') into itself such that

(8.7.26) P(x,D) Ef = f in Q', if f ¢ Le(ﬂ') ;
(8.7.27) EP(x,D)u=u in @', if ue c:(n') ;
(8.7.28) IE 1is a bounded operator in L?(Q') if |a| <m .

For the proof we need an elementary lemma on linear transformations

in Hilbert spaces. .

Lemma 8.7.1. Let H' and H" be two Hilbert spaces, and let To’ Tl

be two linear mappings of H' into H" such that
i) T, 1s a closed extension of Té;
ii) The range of Tl is equal to H";
111) T has a continuous inverse, that is,
el < clizell, ¢ < £

T b
(o)

whére 19; is the domain of To.
o}
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Then there exists a bounded linear mapping E of H" into H' such that

(8.7.29) TlEf =f, f e H";

(8.7.30) ETFf=F; fe E}& .
(o]

Proof. .a) Using only i) and ii), we first prove .that there exists
-a bounded linear mapping F of H" into H' such that (8.7.29) is valid.

In fact, let

N=(f; £feH', T,f = 0}

which is a closed subspace of H' since Tl is closed. Let No be the

orthogonal complement of N in H'. Every f € H' then has a unique de-

composition f = g+h with g ¢ N and h e No, and since Tl =.0 it

follows that f € &ii if and only if h € (95 and then we have Tlf==Tlh.
Hence tﬁe réstrictionlof T, to {?&lfﬁ.No islclosed, one to one, and its
range is equal to H". Let F be the inverse of this mapping. Since it

is also closed and is defined in the whole of H", it follows from the
 closed graph theorem that F is bounded, and (8.7.29) follows ffom fhe

construction.

b) It is no restriction;to assume that To is closed, and

then 1t follows from iii) that the range ﬁiT of To is a closed subspace

o
of H". Let = be the orthogonal projection of H" onto 0{ and set

T
o

1

E T; x + F(I-x)
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where F is the mapping constructed in a) and I is the identity map-

Ping. It is then obvious that E is bounded. If £ e .8;' we have

1

(o]
x T-of = -Tof, hence ETof' = T; Tof‘ = £, which proves (8.7.30). Since

' -1
T,E = TlTo T+ TlF(I-n) =+ Ix =1

in view of 1) and the fact that F satisfies (8.7.29), the proof is com-

plete.

Proof of Theorem 8.7.7. ILet H' = (u; D'u e Le,(ﬂ'), la| < m-1}

with the norm I |2 llDaullg, and let H" = L2(Q'). We define the do-
al <m

main of T, as the set of all u € H' such that P(x,D)u € H" and set

Tlu = P(x,D)u for such u. It is then clear that Tl is closed, and if

we let T = be the restriction of T, with the domain C:(Q') , the con-.

dition i) in the lemma is fulfilled. That the range of Tl is equal to
H" follows from Theorem 8.7.2 with s = 0 and condition iii) follows
from (8.7.15) with s = 1-m. Hence the lemma applies, which proves the

theorem.

Remark. A mapping E with the properties of Theorem 8.7.7 may be
regarded as the Green's function of a boundary problem. See Visik | 1,

HBrmander [ ].
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.8.8 The unique continuation of singularities. The main result of

this section is the following

Theorem 8.8.1. Let P be a principally normal differential operator

of order m with Cm coefficients, defined in a neighbourhood Q of a
point x°, and let ¥ be a function in C2(Q) such that grad y(x°) £ O
and the level surface y(x) = ¥(x°) is pseudo-convex at 2. 1If

ue Q) and
(1) wec™@h), were 07 - (x5 x €9, ¥(x) >¥(x")

(11) P(x,Du=~f eC(2),

o
it then follows that u € C “(Q') for some neighbourhood ' of x .

The proof of Theorem 8.8.1 will require several steps. The most im-

portant one is the following lemma.

Lemma 8.8.1. Iet P Ye a differential operator with coefficients in

'CZ(Rh) and let @ be a continuous bounded function on Rl such that

219(x ) - 219(
(8.8.1) 2: [‘ﬂzule e a ax < C fIP(x,D)ul2 e T¢ xn)dx +

la}=m-1

. 2 2(m-|C¢I) -1 f‘ Qa ‘2 QTQ)(X )dx s 1;6 C:(Q): T>2 1.

|a|‘§.m-2

Also assume that the planes X, = constant are non-characteristic in Q.

Ir
(8.8.2) v e_jf'(ﬁ) and v e'H'(Q-(l/Q)I’ lal é m ,
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(8.8.3) , P(x,D)v = g ¢ qu)) s
it then follows that
(8.8.4) | Dy e Higy, lol <m .

Proof. That the planes x = constant are non-characteristic means
that the coefficient c(x) of D: in P(x,D) is A O in Q. After

dividing P(x,D) by c(x) we may thus assume that

(8.8.5) P(x,D) = D + ) & (x)0” .
' la] < ma <m

In view of (8.8.2) we have, in particular, v e Hch-l)’ o] < m.
Using (2.4.23) we shall prove that the norms 0%l { 9-1),5 remain bounded
wvhen & -0 and |a] <m, which will prove (8.8.4) in virtue of (2.4.22).
Thus choose a function X satisfying the hypotheses of Theorem 2.4.5 and

with so small support that
supp v + € supp X d&x'C {1, 0<e <1

where X dx' is again the measure with density X with respect to the
Lebesgue measure in the plane x = 0. We wish to apply (8.8.1)._1:0

v = v X, To see that this is legitimate, we first note that (8.8.1)
is valid for every u ¢ é'(ﬂ) such that I’u € L° when |af <m, for
such a function can be .approximated in H(m) by functions in C:(Q) with

1
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supports in & fixed compact subset of @ (cf. Theorem 2.2.9). Now we

have I'v e ¢ 1f |a| <m. In fact, this is implied by (8.8.2) if

p-2)
Ia] <m and a < m and hence (8.8.3) gives that Dfiu € Hch_a) in view
of (8.8.5). Thus it follows from Theorem 2.4.5 that Da(v*'_Xe) ¢ 12 when
Ial <m, so we may in fact apply (8.8.1) to u = v, = w_r*'Xe. In doing so
we chooge t = log (e/e), noting that we then have © >1 if 0<e <1.
Integration of . (8.8.1) with respect. to € from O to 1 »q.fter multipli-

-1 -1
cation by (1 + 52/62) 1, now gives

| 1 -29(x )
(8.8.6) % I 0%werx |2(108 S) € (1 4+ 826 lax ae/e < clugar)

o] =m-1 ©
where
1 -2p(x_)
(8.8.7) M = ff'IP(x,D)vele € “n (r + Bz/ea)'l dx de/e ,
o]
o 1 -29(x_) | |
(8.8.8) M" = S ,f’flea‘J*'Xele e “n (Log %)2(m‘|a| )L ax de/e .
o |a|5m-2 °

The 1ntegralr(8.8.8) is convergent. In fa.ct,. we have v e Hf(q)+_(l/2))

wvhen |a| < m-2 1in view of (8.8.2) and the identity

e . " 5 Db-1 ,
689 Iiguyyay = Migcyy2)y * Z Pylip.yan)

valid for all w e E' (with the usual convention that the norm in & com-
Plete space is extended to be + « outside the space). Hence the conver-
gence .of the integral (8.8.8) follows from (2.4.23). \

To estimate M{ We use the fact that according to (8.8.5)
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P(x,D)ve = [»P(x,D)v]*'Xe + % [a.a((Dav)*‘Xe) - (aaDav)*?Xe] .
o] <m0 <m

Estimating the square of the left-hand side by a constant times the sum of
the squares of the terms in the right-hand side we now obtain in virtue of

(2.5.23) and (2.4.24)

(6.6.10) M < c(||P(x,D)Vi|(q,_l)’g,2 + 2 i I{p-2,5

Introducing g = P(x,D)v and using an analogue of (£.8.9), we thus have

with another constant C

y ) i 2 | > / 2
(8.8.11) M < C("Sn(q,) + |a|2< o () v“(Q)-l):8 )
j .

To estirmie the left-hand side of (8.8.6) from below we note that it

follows from (2.4.23) if 0< 3 <1 that

1 I ;\V‘l ) »

1 -29(x_)
(8.8.12) .t 2 < (l1og $)” ff|wx€|2(1og e "o (146%/ %y Tax de/e
o

1 -29(x_)+1
-1 2 2
+ 0 £f|w*'xel € D dx gefe + "w"ch-l) ,

Ve B (1/2)

In fact, this follows immediately by considering separately the integral
(2.4.23) from 0 to 6 and from 6 to 1. Using Theorem 2.4.5 again

we obtain from (£.8.12) with another constant C
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; : -29(x ) 2
(8.8.13) [iwll}qy sesc{(log S e P08 e M1+ 2 ax e
> 3 .e

e 2 .
-+ 0 "w“((p_(l/z)sg ; WE H(q>-(l/2)) .

Summing up the inequalities (8.8.6), (8.8.11) and 7(8.8.15),-» applied
to w = Dav, we have now proved that there is a constant C such that
for 0<3 <1 and 0<6 <1 we have

a 2 ey-lep n, 2, . va"“".:'-_,: 2.
(8.8.14) 3 gm_llh) Mp1),6 < ¢)(1os ) el ’]a%m"‘-"-"“zm-l);a ﬂfil "

-1 ay 2
R L CRCV I

Now choose © so small that C <= log (e/0). With a constant C_. de-

2
pending on © it then follows from (8.8.1h4) that

0

(8:8.15) T Mg ) 5°< lalligy™ T I%lg) veg 3 18g (1 /0)5°
|af =m-1 |a} <m-2 jal <m '

_ As already noted it follows from (8.8.2) and (8.8.9) that D'v e B pe(1/2)]
C_qu,) when |a| < m-2. Hence the right-hand side of (8.8.15) is finite,
and when & — O this proves that Dav € H'(q)) when |a] = m-1 also. The

proof of the lemma is complete.

Lemma 8.8.2. If the assumption (8.8.2) is weakened to

(8.8.2)" ve gr), tvew ), la <n,
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for some real number s, while the other hypotheses of Lemma 8.8.1 are

left unchanged, it still follows that (8.8.4) holds.

‘Proof. We can choose a positive integer k such that ¢ - k/2 <s

everywhere. Then we have
(8.8.16) v e H , lal <m,
, (p-k/2)

so that all assumptions of Lemma 8.8.1 are fulfilled with ¢ replaced by
@ - (k-1)/2 if k 4is positive. Hence it follows from Lemma 8.8.1 that

(8.8.16) can be improved to
a - .
(808.17) DveH (CP—(k-l)/2)’ |a| <m.

Repeating this argument k times, we .obtain (8.8.4), which proves the
lemma..

We next eliminate the condition v e g'(R) in (8.8.2)'.

Lemma 8.8.3. Iet P and ® satisfy the same assumptions as in
Lemma 8.8.1. Let x° be a point in £ and u an element in Aj’(ﬂ)

such that P(x,D)u = f € C (2) and u e C"(w) where ® is an open sub-

[}

set of Q such that
oy 0o
©O{x; xeq, olx ) >0(x), x£x} .

Then it follows that u € C in a neighbourhood of x°.
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Proof. Let Q' be an open neighbourhood.of x° such that Q.
By assumption the plé.nes X, = constant are non-characteristic,
P(x,D)u =f € C (') and u is of finite order in Q'. Hence it follows

from Theorem 4.3.1 that there is a number s such that

(8.8.18) ’u e H'%gg(ﬂ'), la] <m .

Now let € CZ(Q‘) be chosen so that _\y' =1 in a neighbourhocod Q" of

x°, and set v = yu, g = P(x,D)v. We then have in view of (8.8.18)
4 ‘ 1 - ‘ 1
(8.8.19) DvedH (s)’ o] <m; hence g e H (s)
-Furthermore, it is obvious that g € Cc'o(w) and since g=f in Q" we

have even g € Cm(ﬂ"U w). Hence we can find an € > 0 such that

g € Cm(Qhe) where we have used.the notation

Lol
|

=[x xeq, olx ) > CP(xz)-t}

Assuming as we may that cp(xz) = 0, Wwe now claim that
.0.20 . ' Ae.. < 85 .

(8.8.20) g e€H (Mg+2e)) ifv Ae. < s

In fact, we can write g = g + gé vhere g, € C: and ¢(x) < -3¢ in
the support of &5 Then we have A(P+2¢) < -Ae < s in the support of

h . . _ . o .
8ss ence g, € H (Mg+2¢)) if -Ae < s, and since 8, € Co this proves
(8.8.20). 1In view of (8.8.19) we can now apply Lemma 8.8.2 and conclude

that
8-7h



- (8.8.21) v « B\ (pr2c)) if lol <m snd x> -s/c.

Since u =v in Q" it follows in particular that

a +10C/ qn
DueH(t)(Q ﬂﬂe), la| <m,

for an arbitrary t, for we can choose A so large that Ae >t also.
In view of Corollary 4.3.1 (or rather its proof), it now follows that

u e Cm(Q"f]Qé), which completes the proof of the lemma.

Proof of Theorem 8.8.1. a) We first assume that the surface

v(x) = ¥(x°) is non-characteristic at x°. Let ¥, be the Taylor ex-

pansion.of second order of ‘¢ at x° and set with a positive €
0,2
v'(x) =.W2(X) - e|lx-x"|< .

We then have ¥'(x) < V¥(x) for all x / x° ina neighbourhood of xo,
and for sufficiently small € it follows from Theorem 8.6.1 that there is
a neighbourhood Q' of x° such that the level surfaces of V' are
Pseudo-convex and non-characteristic with respect to P in 9'. Hence
Theorem 8.6.2 shows that we may choose A so large that the estimate
(8.1.2) holds wifh P = M and @ replaced by Q'. Replacing ' by
a smaller neighbourhood of xo, if necessary, we can make a c” chaﬁge
.of coordinates so that ¢(x) = x in the new coordinates. But then the
hypotheses of Lemma 8.8.3 are all fulfilled so it follbws that ﬁ € C°°

'in a neighbourhood of xo, which proves Theorem 8.8.1 in this case.
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b) Now let the surface v(x) = ¥(x°) be characteristic
~at x°. 1In view of Remark 2 follbwing.Definition 8.6;1 and the proof of
Corollary 5.3.2 (applied to either Re P or Im Pm) the assertion of
Tﬁeorem 8.8.1 follows from the case already proved in a). The proof is

complete.

Example. A solution of the Tricomi equation
(x2D + D2 )u =0

in an open set Q ‘belongs to Cm(ﬂ) if it is in Cm(ﬂ_) where

O = (x; x e, x, < 0}. For it follows from Theorem T7.l4.1 that 7
u € Cm(Q+) _where Q= (x; x € Q! x, > 0} and using Theorem 8f8,l Witﬁ~
o(x) = X, - (xl-t>2 we obtain that u € ¢ ina neiéhbourhood,df.any
point (t,0) € Q, and the equation is elliptic where x, > 0.

We shall now construct examples which.show that one cannot relax

very much the condition of pseudo-convexity in Theorem 8.8.1.

Theorem 8.8.2. let P be a differential operator with constant co-

efficients and principal part Pm and let N be a real vector with

Pm(N) = o‘ but
PI(N) = (P‘”(N), cee s ann)(N)) £o.

Denote the real progection of the blcharacteristic with direction P! (N)

by D , that is,
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(8822) ' : z = {Re(zPl;l(N)); z € C},

which is a linear subspace of Rn of dimension 1 or 2. Then there

exists a solution u € Cm(Rn) of the equation P(D)u = O which is in-
. X m+l .

finitely differentiable in CZ but is not in C in the neighbour-

hood of any point in ). .

Proof. The set U of all u ¢ Cm(Rn) Vhich satisfy .the equation
P(D)u = 0 and are infinitely differentiable outside 2 is a Fréchet space
with the obvious topology. (That is ; the least fine topology for which: the
mappings U —)Cm(Rn) and U ﬂCw(CZ) are continuous.) Now let Kj be
the countable set of all closed spheres with positive radius and center in
& dense countable subset of Z . If we can prove that the set M,j cof all

+
u € U which are in C™ 1 in K., is of the first category for every Jj,

J
the set M = UMj will also be of the first category and every u £ M
will have the desired Property.

Since any translation of Rn along Z maps U onto itself, it is
thus sufficient to prove that the set of all u € U which are in Cm+l
in the sphere (x; Ix] < R} is of the first category for every R > 0.
Assume therefore that this were not true for a certain R > 0. In view of
the closed graph theorem (see Bourbaki [1], ex. 3, Chap. I, p. 39) we can

then find a compact set K CRn, a compact set K'CCZ and constants C

and N such that

(8.8.23) > sup IDau(x)I SC{ Y sup IDa-uI + ) IDaul ,
lal<m1 |x|<R Yoj<m ¥ lal <N
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By .constructing suitable solutions of the equation P(D)u = O we shall
see that this leads to a contradiction.

‘Let ) be the annihilator of } in R, that is,
2’ =1{t; & eR, <P!N), ¢ >=0)

Zo is of dimension n-1 or n-2 and Zo is the real tangent plane .of
‘the characteristic surface at N. A variable point in- Zo will be de-
noted by ¢ and we shall write do for the Lebesgue measure in 20 let

N be a real vector which is not contained in Y .

Lemma 8.8.4. The algebraic equation in v
(8.8.24) P[(TT]A+N+U)/82] =0, 0 € Zo ,
has a solution 1(0,8) which is analytic in a neighbourhood of (0,0),

and when (0,5) - (0,0) we have t(0,8) = O(|o|2 + l&le)

Proof. If we write P=P +P _
— m m-1

of degree k, the equation (7.6) becomes

+ ... vhere P is homogeneous

]
o

2
Pm(m‘+N+°) + 5 Pm-l(m +N+g) + ---

When 7 =0 =8 = 0 the derivative with respect to 1 is < PI;I(N'), n > '
" which is ;é 0 by assumption_. Hence it follows by the implicit function
theorem that (8.8.24) has an analytic solution = vahishing when 8=0=0,

and it is obviously even in &. Since Pm(N+o) = O(|0|2) .when Zo 3 o =0,
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it follows that the Taylor expansion of (o ,8) cannot have any first

order terms at all, which completes the proof of the lemms.

]
End of the proof of Theorem 8.8.2. Take a function ¢ ¢ CO(ZO) with

[ elo)ds = 1 and set
(8.8.25) uﬁ(x) = [ exp(18-2 <x, M +N+gq>) 9/s5) d(o/5)

where <t is the function discussed in Lemma 7.3. For sufficiently small
00
® the definition (8.8.25) makes sense, ug € C (Rn) and P(D)us =0 in
view of (8.8.24). We shall prove that (8.8.23) cannot hold for any C
and N when u = uy and & - 0.
First note that differentiation of ( 8.8.25) under the integral sign
gives

(8.8.26) sup |Du] = 0(8-2104)
K

since ITS-QI and |o| are bounded when d/%¢ supp @ and 5 —0. On
the other hand, let Y be a vector with < y,'N >=1. (The theorem is
trivial if_’ m =1 for the differential operator P(D) then acts only
along Z . Hence we may assume that m > 1 and then it follows that

NZ O since PIL(N) # 0.) We now have for integer 3 > 0

<30 > u(0) =87 [(1 v <y, m + 0 ) glofo)atoss) -

=8 f(1+< ¥ ©(80,8)n + 80 >)d 9()ds .
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When & -0, Meh%im%mlwma@sm 1. Hence the left-hand
side of (8.8.23) with u = Ug tends to « at least as fast as 8'2(m+l)
when 8 - O.

To complete the proof we shall now show that the last sum in the
right-hand side of (8.8.23) tends to O when u = u; and 5 0. With

the notation

t(0) = 572 1(60,8)

we have after a substitution of variables

) 2
-1<x,N /8% _ v (x) = [ exp(i <x,¢;n + 0/8 >) ¢(o)do

(8.8.27) uﬁ(x)e
It will clearly be sufficient for us to prove that all derivaetives of Vg
tend to O in K' faster than any power of J. Differentiation of
(8.8.27) gives

R * .
(8.8.28) g () = [ & <F00 2 10N>ty K ey g(adas .

Now recall that for functions ¥ € Qz(Rk) with supports in a fixed com-
pPact set and any integer j > 0, one can estimate |§]J|$(§)| by a con-
stant (independent of ) times an upper bound for ‘the derivatives of
of order < Jj (see the proof of Lemma 1.7.1). Denoting the distance from
x to ¥ by |x| . we thus cbtain from (8.8.28) that Ix/&_l'g | 0%vg (x)]

i<x,m >t

*  x .
can be estimated by means of an upper bound for e 5(75n+0/6)ob(o)

and the derivatives with respect to o of order <J. When x €K', the
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*
distance le 5 1s bounded from below and since all derivatives of Ty,

are uniformly bounded in supp ¢ we obtain that
B-JIDavs(x)I = O(S-IQl) when x e K'

Since J is arbitrary, this Proves the assertion that Da vs(x) tends to

0 in K faster than any power of &. The proof is complete.,

8-81



[, o

8.9 The uniqueness of the Cauchy problem. In analogy to Theorem 8.8.1

we shall prove

Theorem 8.9.1. Let P(x,D) be a differential operator of order m

with bounded measurable coefficients in a neighbourhood £ of a point <.
Also assume either that P 1is principally normal and that the coefficients
in the principal part are in 02(9), or else that P has real ct coef-
ficients or that Ph is elliptic with Cl coefficients. ILet V¥ be a func-
tion in CQ(Q) such that grad w(xo) # 0 and the level surface V¥(x) = W(xo)
is strongly pseudo-convex at X°. If u € H%;;(Q) satisfies the equation
P(x,D)Ju =0 and u=0 in {(x; x € €, ¥(x) > ¥(x°)}, it then follows that

u =0 1in a neighbourhood of xo.

Proof. As in the proof of Theorem 8.8.1 we can, using Theorems 8.6.1 and
8.6.3, find a neighbourhood €' of xo, a function @ € dm(ﬂ') and an
S o o
open set w& Q' with wo(x; x € 2', ¢(x) > p(x ), x £ x } such that

u.=0 in ® and

(8.9.1) = 2: / |DO§|2e2T¢ax <c/f |P(x,D)v|2e2T¢ax, v e dZ(Q')
al<m-l

It is clear that (8.9.1) must also be valid for all v e £ (%) H(m) since
such functions v can be approximated in H(m) by functions in d:(ﬂ) with
supports in a fixed bounded set. (In fact, (8.9.1) is valid for all

v e B'(Q) f)H(m_l) such that .P(x,D)v € 1. This follows by using Theorem
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2.4.3 with s = -1. However, we have not proved that Theorem 2.4.3 is
then valid for arbitrary a ¢ Ci’, so we refrain from the weakening of the
assumption u ¢ H%g(): to ue H%:lfl) which this could give. See, however,
Friedrichs [ ], HSrmander [ ]). |

Now let ¥ € CZ(Q') be equal to 1 in a neighbourhood Q'*' of x°,
and set v = $u. We then have v € H(m) and P(x,D)v =0 in o {(JQ'' be-
causé v=u=0 in w and v=u in Q''., This proves that there is an

€ > 0 such that o@(x) < cp(xo) - € when x € supp P(x,D)v. With

Qe = {x x e, p(x) > p(x°) - €}, we thus obtain using (8.8.1) that

5 IDO§|2e2T(¢(XO) - €ay < cf ‘P(x,D)v|2e21(¢(xo) - €ay
kﬂSmJ.Qe - '

s

hence

| IZ ‘fz ]Davledx < cr~t / lp(x,D)v|2dx .
al<m-1 )
-— €

When T —® the right hand side —© and it follows that v.= O .in Qe.
Recalling that v = u in Q! ‘s we nowhave u=0 in Q''f) Qe vhich

completes the proof.

Remark. Theorem 8.9.1 may also be regarded as a theorem on unique con-

tinuation for solutions of a differential inequality

[ (x,D)u] <k )F D% .
Qi<m
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In fact, if u satisfies this condition and we set

a, = ~(P_(x,D)u) (D) ( Dgul®)™, Jof <m,

B|<m

the operator
P(x,D) = P (x,D) + %: a{x)D,
al<m

has bounded coefficients and P(x,D)u .= 0, so ‘that Theorem 8.9.1 can be

applied.

Corollary 8.9.1. ILet P have C. coefficients in a neighbourhood Q

of xo and be either elliptic .or principally normal. Further, let ¥ be
a function in CE(Q) such that grad ¥(x°) # 0 and the level surface
¥(x) = ‘Ir(xo) is strongly pseudo-convex at x°. If u e J1(Q) satisfies
the equation P(x,D)u =0 and u=0 in (x; x € Q, W(k) > W(xo)j, it

then follows that uw = O in a neighbourhood of x°.

Proof. From Theorem 8.8.1 it follows that wu e ¢” in a neighbourhood

of x° and hence the corollary follows from Theorem 8.9.1.
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2.4 The spaces H(S). In Chapters VIII, IX and X, where we deal
with classes of differential equations with variable coefficients defined
by conditions on the principal part only, the following special spaces

H will be important.
P,k P

Definition 2.4.1. We shall denote by H(s) the space H2 X where
,}S

K (8) = (1+]g]2)%2
and we shall write "u"( y = Hu”2 k_’ thus
2 -0 ppag, y) 2 2ys
(2.4.1) lall ()" = €2)™ Fl8Ge ) “(1+]61%)° ae

When s is a non-negative integer, the space H(s) obviously con-
sists of all u ¢ L2 such that ﬂxu € L2 when la] < s. Also note that

the .obvious identity

(2.0.2) Il (g11)° = Tolly® + 5 ol 2

. N\ _
shows that for arbitrary s the space H consists of those ucsH(s)

(s+1)

such that D u € H( ) for j=1, ..., n.
Wé.shall now show that for arbitrary s .one can express the norm

(2.4.1) simply in terms of the L2 norms of regularizations of u.

(These results are only needed in sections 8.7 and 8.8.) In order to over-

come .some technical difficulties in sections 8. T and 8.8 we shall also con-

sider the following two Parameter family of norms
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(24.3)  full(ggy 5" = (207 J18)120ele1 %) (arloe |2 a

This norm is clearly equivalent to "u"(s-l) when u e H and & #0.

(s-1)
It is clear that

(2.4.4) Mll(g_yy,57"lull(gy when BNO, wem .,y .

(We interpret "uH(S) as +o if u ¢ H(s)')

et X e dZ(Rn) and assume that

(2.4.5) X(e) = o(le]™), € 50,
but that
(2.4.6) Q(tg) =0 for all real t =>¢ =0 .

It is clear that every X with -Q(O) = [ X dx £ O has these two proper-
ties for k =0, and when k >0 we only have to apply a power of the
Laplacean to such a function in order to fulfill (2.%.5) and (2.4.6). 1r

€ >0 we shall write

(2.4.7) _ X (x) = e x(x/e) ,
thus
(24.8) R(e) = X(et) .
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Theorem 2.4.1. If (2.4.5) and (2.4.6) are valid and s <k it fol-

lows that there exist positive constants Cl and Ce, independent of &

and u but depending on s and X, such that when O <& <1
(24.9) il y_yy o2 < S e x X 2 e25(106%eR) ac/e + o], .2
A& .9 1 u (S—l),8 < . u ello € € u (S-l)

2
S C2”u“(s-l),8 y U € H(S-l) .

The .second inequality is still true if (2.4.6) fails to hold.

Proof. It is sufficient to assume that u € S in the proof, for S
is dense in H(s-l) (Lemma 2.2.1) and both sides of (2.4.9) are continu-

Using Parseval's formula we obtain

ous in H(s-l)'
1
(@200 [l %%l e (10%e®) T ae/e - [186)2 (e a
o _
where
l/\
(2.4.11) F(¢) = [ |X(e§)|2-e-es(l+82/62)-l de/e .
o}

Writing n = g/lgl » Wwhich is thus a unit vector, and introducing t =e|§|

88 & new variable, we obtain

F(E) < |e]®® f I;((tn)le‘t-25(1+|8§|2/t2-)-l at/t
O

1 a o A
< I§I28<1+I6§I"7)’1{ F1X(en)|2 6725 qt/e + f IX(tn)Ietg‘asdt/t} :
o 1
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Since it follows from (2.4.5) that IQ(tn)I.S Mt* for a constant M

and since X € S, the two integrals in the right-hand side of this esti-
mate are bounded functions of 7 when |q| = 1, which proves the latter
part of (2.4.9). To prove the other part, we note that when [¢| >1 the

.same argument gives
1 23 2 "'l l 23 2 “25
F(e) > je] 7 (1+]|28e| <) l;lX(tq)I 7% at/t
2

and the integral in the right-hand side is a continuous function of 7). which
is always different from O 1in view of (2.4.6) and the analyticity of t.

Hence for some positive Cl we have

(2.k.12) P(e) > ¢, (1+]e]9)° (ot 15" when [g] 21 .

Since

S1+1e1%)%(ueloe1%) 7 < (141612)° 7 wnen |e] <2, 0<B <1,

the first part of (2.4.9) follows from (2.k.12) if Cl-S 1/2. The proof

is complete.

Corollary 2.4.1. From the same assumptions as in Theorem 2.4.1 it

follows that

L _
2 2 -2s 2 2
(2.4.23) € llull ()" < £ lhw % x [ €™ ae/e + ol gy < Collullgy"s weH .
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Proof. If we let. 8 -0 in (2.4.9), the estimate (2.%.13) follows
in view of (2.h;h).

We next give an estimate for the commutator of regularization and
multiplication with smooth functions, which is important in studying oper-

ators with variable coefficients.

Theorem 2.4.2. Iet a e S and let X satisfy (2.4.5). If s <k,

there exists a constant C » independent of & and u, such that when

3
0 <18.S 1l we have

1 2 -2s, 2, 2.1 2
(2.4 .14) £ “a(u#xe)-(au)*xeu e T (19%/e%) Tae/e < Cj“u"(5-2),8 , ueIRs_2).
.Proof. We may assume in the proof that u e S for S 1is dense - in

H(s-2) and the left-hand side of (2.4.14) is obviously semi-convex from

below in ' even. The commutator to estimate is
U(x,€) = [(a(x)-a(x-y)) u(x-y) x (y) ay .
We shall use Taylor's formula with remainder term,

s(x)-aGey) = - F (9 a®ix) ¢ R ()
' o<la| <N

where N will belghosen later and we have used the notation

a@ _glol

2.4.5



1r we write X*(y) = -(-y)® X(y), we thus have

(24.15) Uxe) = 3 @i @) + [ Ry ey .
odal<N

A -
Tt follows from 2.4.5 that X>(¢) = o(|e|® | ), £ 50, hence Theorem

(a)

2.4.1 gives since sa is bounded

1
f ”a(a)lelu * X‘:I2 e—Q(S-lal )(l+62/€2)'l ax d€/€ < C"u"(s_
[o]

2
|| -1),8

2,
<Clullspy,s” it lol Ao

It thus only remains to estimate the last term in (2.4.1‘5), for which we

introduce the notation
Uy(x,€) = J Ri(x,y) u(x-y) X (y) day .
First note that for fixed x we have
-s-(1/2) _ -s-(1/2) |
™ UN(X:€)| < "u"(s_.2)||€ RN(X")'XG( )"(2-5) .
Let the support of X be contained in the sphere lxl <R _and set

Al(x) = sup ]Daa(y)l .
lee| =1 | x-y| <r

2.6



Since a8 € S, we have A ¢ L2. We can estimate D‘; RN(x,y) when
[x-y] <R by a constant times A(x)|:pc--yll\1-|o‘l if ja| <W. Hence we

-obtain if s > 2 that
€7 Bry e, 6 Ol ) < 167V D G, i (Ll = OlAGINS(42)/2

which is O(A(x)) when O0<e <1 if we choose N > s+(n+l)/2. On the
other hand, if s <2 and ¢ is an integer > 2-s, we have if

N > o+s+(n+1)/2 that

175 By e, 3 g < 17V Dyl 3 Ol = oa0)
when O < e <1. In both cases it follows that : )
2

1
2 -2s 2, 2,-1_ de 2
£f| UN(X,G)I € (l+6 /€ ) dX‘E‘ S C“u"(s_._e) _<. .C"u"(s_.g),a

The .proof is complete.

Corollary 2.4.2. From the same assumptions as in Theorem 2.4.1 it

follows that

1 .
2 .
(2:416) S lalu e )-tou) % I e Pac/e <oy )% wen, )

‘We shall also need the following result which is very closely related

to Theorem 2.4.2.

2-"‘“‘7



and a € S, we have

Theorem 2.4.3., If u e H(s-l)

(2.%.17) alu *-xe) - (au) *~x€ -0 in H(s) when € -0 .

Proof. The statement is obvious if u e d:(Rn) and since this is a

dense subset of H(s 1) it is thus sufficient to prove the estimate
(2:4.18) fla(u xx) - (aw) * % iy s llull 1), ves, o<e<t.

(cr. the .proof of Theorem 1.2.1.) With the notations of the proof of The-
orem 2.4.2 we thus have to prove that "U(x,e)”(s).s Cs"u”(s-l)° But this

follows from (2.%.15) since
2 2
o * ol gy < lullgy_py sup 8% )] (Pl 2)Y/2

and the norm of the remainder term in (2.4.15) in any space H(o) can be
estimated in termsyof "u"(s-l) if N is chosen large enough. In fact,
this follows by an obvious change .of the estimates in the proof of Theorem
2.4.2 which may be left to the reader.

In section 8.8 we shall aiso have to consider spaces of distributions
which can be regarded a§ square integrable functions of .xn with values
in H(Q)(Rn—l) -where @ is a quction of x . More precisely, we intro-

duce -the following definition.

. Definition 2.4.2. Let @ be .a bounded continuous function in Rl'

We then denote by wa) the space of all u ¢ S'(Rn) such that the par-
tial Fourier transform ﬁn (defined by (1.7.21) and (1.7.23)) 1is locally

square integrable .and

2.4.8



. o(x )
(24.29) i)™ = (20" A1) 204081%) ® @t ax <o

Theorem 2.4 .k, Hz¢) is a Hilbert space with the norm "u"iw),

dZ(Rn) is dense in HZ¢) and if Yy € S, u e HZ¢) we have Ju € Hz¢).

Proof. The completeness follows immediately as in the proof of The-
orem 2.2.1 from the fact that every function 6; such that the .integral
(2.&.19) is finite must automatically be in S* .since ® is bounded. To
prove that dZ(Rn) 1s dense we only have to note that if v e H(¢) and

o(x )
(2.4.20) / 6;(g',xn) V;Zg',xn5(1+|§'|2) LT ax =0

(=)
=.0 for {(2.4.20)

o P
for every u ¢ Co’ it follows that 6;(§',xn)(l+§2)
means that the partial Fourier transform of this function is 0. Since the
last statement follows immediately from Theorem 2.2.5, the proof. is complete.

As above we shall also use the norms
_ - l-npa g, , 2 2,®(x,) 2,-1 1/2
(2-21) Jlullg 1y 5 = 0@ I8 (6% ) 2(1+]e1®) P (14f0e]?) dg ‘ax )

which are equivalent to ”u"(m-l) when u e H and 8 > 0. When 5\O

(9-1)

we obviously have

(2.4.22) HHH(¢_1),54’"?"(¢)’ € Hig 1)

with the usual convention that “uH(Q) is defined as +w if u ¢ HEQ).

2 ol" 049



-Furthermore, Theorems 2 1& 1 and 2.4.2 can immediately be extended to
the spaces Hztp) Thus let X e & (R ), denote by X dx' the measure
X‘(X')dxl erax o in the pla.ne x =0 and set for u € .3'(Rn~) ;

u*'X =u* (X ax') .

 Theorem 2.4.5. ILet (2.4.5) ve valid (for toe Rn-l) and assume that
¢ 1is bounded, sup ¢ < k. Then there exist positive constants 'Cl . and

C independent of 6 and of u but depending on X .and on ® such

2)
that when 0 <® <1

(2.4.23) Cl"“"f(p-l) 5 < I lu*'Xel €’ (140 /e 1ax de/e +
. 2 o . )

+ Ilullgcp_i)e < C2||u||("q_>.’1),52 . UE Hfcp-l)

in particular, this méa.ns that u ' X€ € L'2 ' vfhen € >-O._

APr-oof. The theorem follows from (2. 1} 9) since We may assume that
uec (R ) in view of Theorem 2.4.4 and since the proof of Theorem 2 L.
shows that the consta.nts Cl and C .of* that theorem remain bounded when
8 belongs to a compact subset of the interval = <s <k.

Similarly, Theorem_?._h.2 gives

Theorem 2.4.6. Iet a e S and let X .satisfy (2.4.5). Irf ¢ is
bounded, sup ¢ <k, there then exists a constant 03" independent of
and u, such that when 0< 5 <1 we have

2‘1" olo .



1 -29(x )
‘Fg‘u,gu) f£ ig(u*tx)-(au)*'xl2e n (l+8?/52)‘ldxde/€45 C3Hu"Z@-2),52’

u e.H(¢_2)
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PSEUDO-PERIODIC FUNCTIONS

by
J. P. Kahane

These lectures are devoted to the subject of pseudo-periodic func-
tions, which were first introduced by Paley and Wiener in their book
(1934) but have not received much attention since then. First, we attempt
to give a general idea of the material to be covered:

Ir s(x)=Ya ei)'nx, then s(x) is almost periodic, with spec-
trum [Xn}; s(x) does not look like a periodic function except (as was
observed by Bochner in 1926) when {kn} is regular (= uniformly discrete,
in Beurling's terminology), i.e., My7h, 28> 0. We call 5=1nflxn-+l-xnl
the step of_the sequence [Xn}.

The following definition was given by Paley and Wiener (19%34): ¢
is pseudo-periodic is f is locally square integrable and if for any two
sufficiently large intervals I and J +the norms in L2(I) and L2(J)
of all linear combinations of translates of f are equivalent, that is,

the ratio of thes norms is bounded from above and below by positive con-

stants. Paley and Wiener proved the following:

1) f is pseudo-periodic <—=> ¢ is a.p (in the sense of Stepanoff)

and (r } 1is regular

2) .ps. period of (A ) < 8n/o

where ps. perigd.{xn} = inf |I], the inf being taken over all in-

tervals I which satisfy the condition above.



In 1936, Ingham proved the following:
ps.period (A} < /s .

This is easily seen to be the best possible such estimmte (consider an
ordinary periodic function).

The following is also known (1957):

Ps.period = 2x A(A) (A= {Xn])

where A(A) is the upper uniform density of A, defined in any one of

the following three equivalent ways:

a) {un} is of uniform density D <=> w -nD = 0(1); then A(A) =

inf of the densities of the {p.n] 2 A having a uniform density.

b) Let n(r,r+t) be the number of points of A in [r,r+t[, r

real, t > O. Then

A(A) = 1im sup n(r,r+t)

t 90 o < r<+ow t

t 9w lrl - t

Also to be discussed is the following, which connects the theory
of .pseudoperiodic functions to the theory of interpolation by entire
functions of exponential type:

Let T = (1> O|V'{bn] e £2 | d> € L2, ® the restriction of an en-
tire function of exponential type <1t s.t. d)(ln) = bn] .

Then inf 1 = 1 ps.per.(\ }.
P 2 n



(We remark that Beurling, in his seminar in 1959, obtained stronger
results in the L  case.)

-Finally, we shall discuss the following problem of Mandelbrojt:
given a class of functions C, defined on a domain D, aset A, a set
GCD, anda property P. Let (A,G,P) be the following proposition:
if £ € C has spectrum in A and satisfies P in G, then f satis-
fies P everywhere in D.

As an example, we take for P any one of the following properties:

i) fed

2) £ is analytic

3) f 1is locally representable as an absolutely convergent
Fourier series

4) £ has derivatives (in the sense of Schwartz) which are
locally in Lg.

We assume that A is regular, and that G = I is an interval. Then:
it |I] > 2rn A(A), then (A,G,P) is true
if |I] <2x A(A), then (A,G,P) 1is not true, at least for

3) and 4).

We now begin to give the details; first, some definitions.
P
R is p-dimensional Euclidean space. We say that G C RP is a

domain if it is the closure of an open bounded set. We write
f=fr = co ... .ee
(f} (f} *(x)ax = [ ; ] £(x, s% )ax, ax

2 _ 2, P
E” = E°(R') = {f € complex valued functions defined on RPI

V domains G [ |f|2dx <w)
G

3



E~ 1is a Frechet space with the seminorms \

Ief = (12132,

P

We define, as usual, the translates ft of f, teR, by

ft(x) = f(x-t) .

Then, if VU is a fixed domain (say, the unit cube about the origin),

"ft”K) is a family of seminorms for E-.

We say that f is E° bounded if sup , ||£,fij< © . Then EEZ
= _oulidead P gy
t € R
(the space of E2 bounded functions) is a Banach space with the norm

el = sup 5 llg -
te

Next, the definition of E2 almost-periodic functions (Stepanoff):

1) fe BES and {ft] p 1s relatively compact in BES
t € R

or, equivalently,
2
2) f 1is in the space, in BE > - of the trigonometric polyno-
mials with real frequencies.

If, as in the Bohr case, we define

a(A) = 1im % / f(x)e_ix.xdx A e R
£ o E5 |

AeX = Xlxl + .0 4+ xpxp H

then the a.p. spectrum of f = A s given by



A= {xla(r) £ 0} .

2.

. N
Equivalently, A = {Xle1 * is in the space of translates of f in EE

We shall also need the following important fact:
£f= lim ) aj()\;)eix‘x

BES Lo A
J —ew finite

We recall the definition of E2 mean periodicity (Schwartz):

1) Define <(f) = span of [ft} p in E°. Then £ is E°
teR

mean-periodic <= 1(f) # E° or, as is easily seen to be
equivalent,
< @2 - 2
1') f is E° mean-periodic <> 4 ¢ € L= with compact sup-

port s.t; f *x@=0.

Then, the problem of harmonic analysis for E2 mean-periodic func-

tions f 1is as follows: “to find the P(x)el)vx € 7(f) where P(x) 1is &

polynomial, and A 1is a complex p-tuple.

. ix- :

We define spectrum £ = {A]e X e v(£)}. The spectrum of £ is
m.p. © m.p.

said to be simple if no P(x)elh-x € 1(£) with deg P.> 1.

The problem of harmonic synthesis, then, is:

Does the set of P ei*'X € 1(£) span <(£)?

In the case p =1, this problem was solved by Schwartz in 1949. It is

not solved for p>2.



Finally, we define E2 Pseudoperiodicity:
. 2 2
f is E ps.per. <> 1(f) CRE

We shall prove the following

\

Theorem: ILet us consider the following statements

1) £ is B ps.per.

2) £ is o a.p with regular spectrum

( real
3) f is B m.p with spectrumi imple and harmonic

LI‘GEE

synthesis holds.

Then 1) <=>2) <= 3) and

m.p spectrum f = a.p spectrum f .

We need the following

Lemma I: Let F be a closed subspace of E2, FC BE2. Then ¥ G s.t.

on F ||| is equivalent to I ”G

Proof': If G is any domain, then, for any f e BE2, we have

llf”G < 7k ”f“, where k is such that G is covered by k translates
of /. oOn the other hand, F, being closed in E2 and contained in
BE2, is a closed subspace of BE2 (since the topology of BE2 is
stronger than that of E2). Thus », F is a Fréchet space as a subspace
of E2, and a Banach space as a subspace of BE2, with a stronger top-
ology. By a theorem of Banach, the two topologies are equivalent; if one
defines tho topology in E2 by an increasing sequence .of semi-norms

||f||Gi (Gi+lDGi), then there exists an i s.t. || ana Il ”Gi are

equivalent.



It is easily seen that if T(f)c:,BEE, spgpgrum f is real and
simple. PFurthermore, it follows from Lemma I that this spectrum is also
. s s t 2t
regular; if not, then we can find Ln, Xn € sp%SB?um f s.t.lxn xnl.->o

eikn-x _ eikﬁ-x

1 -
as n oo , and A # A!. Then £ = € 1(f), and

le |

el

- o as n -~ , for any domain G ,

contradicting Lemma I. We have thus proved:
Proposition 1: 1) => sp%cBrum f 1is real, simple, and regular.

We shall prove now

Proposition.g: f E2 ps.per., = f E2 a.p.

lemma 2: If geC and V O = (ai,...,ai),

Ctl+ cee + (X
a d P 2
Dg = 0& a & € BE ,
Ox .o Ox P
1 P

then

sup_Plg(x)[ < oo
x € R

Proof': Choose h e ¢, with compact support G and s.t. h(0) = 1;

then

(01
sup , D7 (g, h)fl, <w for all «a .
xeR v



Taking Fourier transforms, we obtain, in particular,

. 2P,
tSI‘:pRpll(l + 1) J(gth)lng(RP) <ew .

Therefore, by Schwarz's inequality,

sup / [3‘(gth)| <w
t € RP RP

»~, sup Igth| <w ; 1in particular,
t e RP
sup Igth(O)l = sup |g(-t)] <o ,
t e RP t € RP
.and Iemma 2 is proved.

has support in

Now, choose 7_ € c, 1. >0, {;P ne =1, n

(x| |x] <e}. Then Da(f % ne) is uniformly bounded, by Lemma 2. Thus
{((£ * ne)t] is rel. compact in the uniform topology. Therefore, it is
rel. compact in L2(G), for any G. Therefore, by Lemma 1, it is rel.
compact in BEQ.. Thus £ * M, 1is an E° a.p. function. Letting e -0,
£ x N —f in BE2. Thus, f is E2 a.p., and

Proposition 2 is proved.

‘Proposition 2 Spﬁc%rum f = spgc};)rum f and harmonic synthesis holds,

for f satisfying 1.

Proof: This follows from Lemma 1, Proposition 2, and the fact that we have

f = lim 2 a.(n) e
BE reA d
J 9o finite



The proof of our Theorem will be complete once we have proven
i P .
Proposition 4: If ACR is s regular sequence, and we consider

finite sums s(x) = 3 11()\.)en"x

s then HSHG is equivalent to [sl|
Ael

for some G.



SOME APPLICATIONS OF ENTIRE FUNCTIONS OF
EXPONENTIAL TYPE TO HARMONIC ANALYSIS (1)

The Multiplier Problem for Fourier

Transforms of Measures with Compact Support

by

P. Malliavin*

04( will denote the algebra of measures definéd on the real line
and with compact support, eAZa will denote the part of @4£‘consisting
of measures having their support contained in an interval of length a.
The main problem that we shall consider here can be formulated asg follows:
"how fast" can the Fourier transform ﬁ(x) of a measure u eoA%é u #_O,
tend to zero as x tends to t 2. through real values? A well known
result is that if we define I({}) by |

00

I(R) = f |10g]li(x) ] dxg )
-0 1+x

then for all p e oAt, H# O we have
(1) I(f) <

The":condition (1) describes completely how fast the Fourier transform of
& measure having its support in the half line must vanish at @ ., (This

is an easy result; a proof can be found for instance in Paley-Wiener).

*
The results which are summarized here come from & Joint work with
A, Beurling and the complete proofs wilil appear elsewhere.

N



Iiowever, it is obvious that more than the condition (1) is needed to give
a complete description in the case of measures with compact support.

We now define the notion of a multiplier. Let S(x) be a given continuous
function on the real line. We shall call a measure He c\/'te a multiplier

of type € for S, provided that
H(x) 8(x) 1is bounded for X real.

We obtain using (1) an obvious necessary condition for the existence of

a multipliez_' » hamely

J 1og :Y|s(x)] dx2 < o
lix
Oor supposing, as we can do without any loss of generality IS(x)I >1,
(2) I(S) <w

Conversely we can state

Theorem 1: Suppose that log|S(x)] is uniformly continuous, and that

(2) is satisfjed then S has multipliers of arbitrary small type.

Theorem 2: Suppose that S 5 the restriction to the real axis of an

entire function of exponential type and that (2) is satisfi‘ed. Then S

has multipliers of arbitrary small type.

The theorems 1 and 2 will be derived, independently of each other, a
more general stmtement s will be given later in Theorem 4, when the

technical background has been sufficiently developed.



It is easy to deduce some consequences of Theorem 2 for the algebra
of measures.- Let us denote by 9 the class of entire functions which
can be written as the quotient of the Fourier transforms of two measures

i

with compact support.

where p, v eoAL}

<ME> -

= [FIF entire, F =

Then we have the following characterization of Q.

Proposition 1. F ¢ 9 if and only if F is an entire function of

exponential type such that

I(F) <w .

This statement can be compared to-the theorem of Nevanlinna which
says that a holomorphic (or, indeed, meromorphic) function of bounded
characteristic in the upper half plane Im z > 0 can be written as the
quotient of two functions holomorphic and bounded in Im z > O. However
this analogy cannot be carried further to meromorphic functions: it is
easy to construct, using for instance the result of the next lecture,

a meromorphic function. G, of éxponential type, such that I(G) < =,
and such that G cannot be written as the quotient of two elements of
a/f Now using the fact that Theorem 2 allows us to choose multipliers

of arbitrary small type, we have

, , A
Proposition 2. Given measures n, v e M such that % is entire, then
— § — =25 e
for every e > 0, it is possible to find Vi e<¢%% such that p « Vi
belongs to the ideal generated by v; that is, we have pu % Vi =V *o

for some w ¢ o/t{,
0-3



The propositions. 1 and 2 are immediate consequences of Theorem 2, and
we leave their proof to the reader. Another application of Theorem 2
will be given in the next lectpre.

We can also give several other formulations of Theorem 1. If §
is given, we shall associate with S the class 04% of functions f
such that

+mA
[ | £(x) S(x)jdx <.«

=00

Then theorem (1) answers the following question: does there exist in

A

5

1/28; 04&8 is a space of generalized distributions and we can now read

a function with compact support? Denote by'eﬁbs the dual of

Theorem 1 as the following theorem of regularization in this space:

suppose the hypothesis of Theorem 1 fulfilled, then for every T.ecAbS

0
and for every e > 0, it is po;sible to find o ¢ CO, with support

contiained in an interval of length ¢, such that Txq e C.

We will give now some indications of the proof of Theorems 1 and 2.

The technique used can be described as follows: First we shall
reduce the problem of constructing multipliers to a problem of potential
theory on the real line, for a certain kernel satisfying the principle
of balayage. This will allow us to apply then the full strength of

Dbotential theory and to solve our problem by using an extremal method.

0-4



H Reduction to a potential problem in one dimension

We shall denote by G the function

. 1+u
G(u) = lOgll;u u>o.
v *
G 1is the restriction to the positive real axis R of the Green function
. *
for the half plane Re z > 0. If ¢ is a measure with support in R we

shall denote by U'(p its potential defined by

’ *
where # denotes the convolution on the multiplicative group R , that
is

vPx) = | o(Pag(t) .
0

Now we can state the following representation formula.

Proposition 3: ILet f be an even entire function of exponential type a

such that

I(f) <=

then there exists a measure ¢ such that

log|f(x)]| = - U¢(x) x>0



furthermore ¢ satisfies |,

(%) lim inf 22> 8
t oo
R
(5) lim [ adg
R=w0

exists and is finite.

Conversely, let @, be a measure satisfying (4) and (5); then for

every 1.> 0, it is possible to find a positive measure P such that

o«

(6) h(z) = [ 1logl|l - zot~2|ae(t)
(0]

will satisfy

h(z) < (a + 1) |z| ; o(1)

?
(7) h(x) = -xU l(x) + O(log x) , for x real large enough .

Remark: It is easy to go from the function h given by a positive con-
tinuous measure 0 to an entire function of exponential type. We shall
call a function h of the kind given by (6) and satisfying

log|s(x)| + h(x) < 0 = multiplier in the wide sense.

Proof of Proposition 3: Iet us first suppose that all the zeros of f

are real; let n(t) = numbers of zeros of f € (0,t). Then

[ ]
loglf(x)| = [ 1ogll - x2t-2|dn(t)
0

I-2



or making an integration by part

loglt@) _ 5y fm 2x__ n(t) 4,
. V. -

X 0 x2 _ t2
or defining the measure @ by
R
n(R
f do = R) ]
o

we get by another integration by part

loglf(x)| = -x ,(f:o G(%)dq)(t) = -qu)(x) .

Now the fact that I(f) <« implies (cf., Boas, Entire Functions) that

lim -I-l-(-%)- exists and is equal to the type of f. We have

do(t) = _{_dntt) -2 E) —d—t > -(a + €) d—:

if t 1is sufficiently large, and this proves (4).
Iet us now consider the case where the zeros of f are no more real.
We shall reduce it in an obvious way to the case where f has only real

zeros if we prove the following lemma.

Lemma 1: ILet f be an even entire function of exponential type such that

I(f). <o ;

*
then there exists a measure dp, positive, with support on R, such that

0

logle(x)| = J 1logll - x2t-2|du(t) , for xe R .
0

I-3



Furthermore, denoting by N(r)

we have

m,

(8) N(R) =

Proof: Let denote by

W, (x)

the numbers of zeros of f 1in |zl <R

R

] au(t) + ofR)
0

1ogll - x2e_219|

by A the sequence of zeros of f contained in the angle

-7

2

and let

6, = argument of A,

<arg z <

R

8|X| = Dirac Mass put at the point |L|

With these notations the Welerstrass factorization of f can be written,

x denoting always the convolution on the multiplicative group of posi-

tive reals,

log|f(x)|= = (W, % &y 1)(x) .
og|f(x)| XeA‘( o, I x)

I-4



Now we shall use the factorization

W =WO*K

e 0
where
2
2 x(x" + 1)|sin 6]
Ky(x) = &3 5 3
X -2x cos 260 + 1

factorization which can be proved looking to the Mellin transform of

both members. Then we will get

log|f(x)] = W ox Z K, =* 6|

Ael GX kl

‘the interversion of integration used to obtain this formula being Justi-

fied by the fact that I(f) <= implies
(9) z o | <o
which with the fact
Ké(x) = 0(6x) 0<x<3
implies -the absolute convergence of

ZK, x9d .
g, ¥ "I

I-5



Iet dM the measure equal to the sum of this series, du 1is positive.
Finally (8) results from (9), as an elementary computation shows.
Now with Lemma 1 the first part of the proposition 1 is proved in

the c¢ase of complex zeros as in the case of real zeros.

Proof of the constructive part of Proposition 3: We have now to show
P

‘how, given a potential U l, we can construct a function h, of the

form given in (6), such that (7) holds. Denote by

R
o.(R) = [ a9, , B = lim ¢(R)
1 0 1 R =

and let ® be the measure defined by its differential dw:

do = d(x[@y(x) - B +a+ 1]) .

We have then
a@x) - a9, (x) ;

hence

o
_ ?
[ 1ogl1 - x2t 2|da)(t) = -xU l(x) .
0
Furthermore for x sufficiently large, x> M, ® 1is a positive .

measure. Let P = positive part of . Then

* 2 2 M 2 2.
{-) logl|l - xt™7[{ae(t) - dm(t)] = 1logll - x"t77|[ap(t) - dw(t)] ,
¢)

and this last integral is O(log x) for x large, which proves (7).
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11 Solution of an extremal problem

We shall reduce the multiplier problem to a problem on the po-

tentials U®. Iet denote by

o(x) = lo§|i%x}|

(We can suppose without loss of generality that ¢ > 0, :-that: &(x) = O(I)
near zero, and that o(x) is even — if it were not the case we shall in-
troduce Sl(x) = 5(x)8(-x)). Now a being a positive number given, let

-us consider the convex set c/z=o4ko,a) of measures ¢ defined by .
(10) Alo,a) = (@lt? >0 and a9 > -a %‘J .

Now reading the Proposition 3 we can state: S has multipliers in the

wide sense of type arbitrary small if and only if for every b > O there

exists @ e.A(o,b) such that

R
(11) lim [ dg
R=% 0

exists and is finite.

The next step consists in replacing the condition (11) by a.con-

dition on UP. As o> 0 we have, for a1l ¢ eclo,a),

wso.
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Let denote
z dx
(12) 1) =/ P
0]
Then £(¢) 1is a number finite or infinite well defined. We have

Lemma 2: The condition (11) holds if and only if

£(9) <= .
Proof: We have

R [}

dx R dt
[ P = 1 a@et)F
0 0
If @(t) tends to a finite limit when t -~ it will be the same for
the integral.

To prove the converse we shall proceed as follows. Let @ denote
a given number Q> 1, and denote by ha a four times differentiable

function such that

_ha(t) for t>«

0
[
.

for t<1.

il
(@)

hlt)
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Then let k, be the bounded function defined by the convolution equation
. dt
U =h where dw, = -ka(t)—t—_' .

(This equation is. easily solved by the Mellin transform).

We have

k (t) - vhen t - .

Hence

Jm fnag) =21 (0%

This is true for all &> 1. Furthermore

These two facts imply that (11) is fulfilled and the lemma is proved.

Now we can state our extremal problem. Minimize the integral £(¢)

vhen ¢ eoQXa,b).

Let us denote by o the function defined by

(13) o, (x) = inf UP(x) for all ¢ eca,b).
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Now using the theorem of the infimum envelope of a family of potentials,

we see that

_ b
(14) g =U
where Gb is a measure satisfying
dt
deb > ~b X

Hence Gb eo[z(c,b) and ag obviously we have
£(0,) < £(@) for all ¢ edd(o,b)

eb will give us the solution of our extremal problem. We have then

Theorem 3. S has multipliers in the wide sense of arbitrary small type

if and only if for all b > O

400
(15) I o, ()% < w
(vhere o, 1is defined by (10) and (13)).

Now the problem is to evaluate (15). We shall do that .using the
properties of the extremal measure Gb. Iet us denote by II “2 the

energy norm on the measures defined by

L
lloll, = ¢/ v¥ag)®
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If o can be written as a potential
s=1",

ve shall denote by {J(o) the Dirichlet integral. of ¢ defined by

(16) Do) = lellz .

We shall denote by (ulvly the scalar product associated to the Dirich-
let integral.

Iet us define

[+ ]

+oo 00
2 dx du u 2 dx
(17) M) =1 loI"=+f S lolxe?) - o(x)|" = .
X X
0 o u O
Then looking to the Mellin transform of G it is easy to show that
(o) and dji(o) define equivalent norms.

We can now state our main theoren.

Theorem 4: Suppose that o has a finite Dirichlet integral and that

(2) holds; then S ‘has multipliers in the wide sense of arbitrary small

type.

. Proof: We shall study an extremal problem which has in fact the same
extremum function that the function oy introduced in Theorem 3 has.
We will not use this fact in the proof, and for the sake of brevity, we
will not write the proof of this fact which we mention only to explain

the success of the method.
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Recall that a function £, such that A(£) <o is called a pure

potential if there exists a measure positive w, such that
r=0".

Then it is a well known and elementary fact that: f is a pure po-

tential if and only if

(flgzo,>0 for all g> 0.

We have the following use of this characterization.

Lemma 3: Iet £ be a given Vfunction"such that

He) <= .

Bf = (gl/j(g) <® and g > f almost everywhere for the Lebesgue measure}

*‘,
Denote by f the projection of the origin on the closed convex set

Bf., Then

¥* *
f is a pure potential f = . v

*
f =1 almost everywhere for the measure o .

For every pure potential h we have

O n) <O(z-n) .
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Proof: If g > 0O we have

*
f +tge B

Hence
A" + tg) >He™)
which implies
(f*lg% >0

*
hence f has to be a pure potential.

Now if t > -1 we have

(1 + t)f*z (1+ t)r .

Hence
* *
f +t(f -f)eB

which implies as before

]
o

¥, *
(£ |r -fz’o

or

/ (f* - f)dwn

1
()

II-7

for all t> 0.

t>0

for all g> 0

for t> -1,



: * * ‘
As >0, £ >f, this implies f =.f a. e. for the measure w.

‘ Finally
D" - n) -0 - n) =) - He) + (u]e - f*%,'.

Now if h is a pure potential the last integral is negative as

* *
f~-f <O0. From the definition of f we have

ey <Me)

and this proves the lemma.

Lemma 4: Let o Dbe a given function such that

ﬂ(o‘) <®,

and let V¥ be an absolutely continuous measure given, such that the

restriction of ¥ to every compact set K 1is of finite .energy.

Then there exists a measure 6, such that

>0

almost everywhere for the Iebesgue measure, and such that

J (- o)y <= .
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Proof: TLet KN ‘be an increasing sequence .of compact. sets, UKN being
the positive real line. Iet *N be the restriction of ¥ to KN ‘and

let us apply the lemma 3 to the function

¥

fe=0+UN

*
denote by f_ . the projection of the origin to the convex set B, -

R N
Then
.
fN_.= U ,a)N,> 0.
Let
On =% - ¥y -
We shall have by Lemma 3
2 x Yy
(18) loglly = ey - v ™) <o)

e
U N >0 a. e. for the Lebesgue measure

eN .
J(U™ - o)aley +¥g) = 0 .

Let us now select a sequence 9N which converges weakly to a
J

measure 6. We will have still

Ue.> o] ' a. .e.



From another hand

0 o
S - ooy = -f(u LI o)avy -

Denote by hN ‘the characteristic function of KN; this equality gives

us using (18)

oy |
J(u™ - o)nav <20(0) .
As we integrate positive functions this .means that

J(P - o)ay < 28(0) <= .

Proof of Theorem 4: ILet b be a positive number given; denote by V¥

the measure

and apply Lemma 4 to (o,¥). Then we construct in this way a measure

@ such that
dg > - b — .
= X

From another hand

IUB%=I(UB-0)%+IG%(X—
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By (2) the last integral .of the second member is convergent. Using the

lemma 4 we get that the first integral is convergent so

S Ecw
X
Now we have only to finish to remark that the fact.that d6 > - b %{-5

Amplies that Ue is lower semi contimuous, with the hypothesis that

S(x) 1is continuous and |S(x)].>1, we get that
L

1s a lower semi continuous function, positive almost everywhere, hence

everywhere positive and this proves the theorem.
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II1I. Demonstration of the Theorems 1 and 2

We shall first reduce each of these theorems to the Theorem U,

o

that is we shall construct a majorant i of the given ¢ such that

,,G(al) <eo .

Let us first remark that if long(x)l is uniformly continuous we can

find a function k(x), satisfying a uniform Lipschitz condition

Ix(x) - x(x*)] <Alx - x’

and such that

k(x) = log |8(x)| + o(1) .

Let

oy (x) = %{l .

Then: (2), implies with the uniform continuity that ol(x) = o(l),

and therefore

(19) |01(eux) - ol(x)l < Au lul < 1.

Let us denote by

o(8) = oled) .

We have just remarked in (19) “that ¢ 1is uniformly Lipschitz.
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We have

Lemma 5. let ¢ & function which is uniformly Lipschitz on the real

line and such that

+o
J lo(e)]at <o .

-00

Then

'hod +oo 2
Ly0) = 1 [ lae+u) - o)l at <o

2
-00

=1

*
Proof: Denote by ¢ +the symetrically decreasing function which is

equimeasurable with ¢. We have

2
00'2“,) - }m }w lo(e) - ‘I’é‘l)l e an

-o -0 (g - 1)
Let
Kn(g) = min‘(n s %’ .
_g .
Then

oo oo 2
D6 =im 1 Jote) - o] te-war @
We have, using a theorem of Hardy, Littlewood and Polya
2 _ * * 2
I {@(5)- @(n)] K (£-n) dean < [ f [4> (£)-o (n)] K (§-1) agan

and passing to the limit we get

D,(e) < L)
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Let now u > o. We have by the Lipschitz condition

. 2
"t +u) - <b*(e)) <hu o (E+u) - o (e)]

Now if we remark that

to oy * P % * *
Jlo(e+u) - o (e)lae = [ {@ (¢ +u) - o (E)}dg
oo * *
v [«» e) - o (§+u)] a
-u/2

I

u/2 *
2 [ o (&)ae <A
-u/2

We obtain finally
[(a*(gh) - 0%(6))% ag < 4, o

which proves the lemma.

Now we can remark that with the hypothesis of the Theorem 1, we have

o bounded and

1
[loy(x)] & <o

which implies flal(x)|2 %f < w, and so the convergence of Jb;(ol) is
a consequence of the convergence of the integral Jjé .defined in the

lemma 5.

Then the hypothesis of the Theorem i implies the existence of

multipliers.in the wide sense arbitrary small type.
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Now consider thg hypothesis of Theorem 2 , that is
S(x) = £(x)
where f 1is an entire function of exponential type. Introducing
£.(2). = 2(2)%(z) + £(-2)F(-Z) + 1

we can, without loss of generality, suppose that f is even, and greater

-than 1 on the real axis. Then using Proposition 3 we can write

( log|f(x)| = -qu)(x) >0 where

(20) J e > -a %
J Uq)(x) dx > o
N x ’
We have

Lemma 6: The conditions (20) imply that ¢ is a measure of finite energy.

Proof: ILet dx denote the measure g—j—: restricted to the interval
¥*
(1, +=). let denote by dx  the swept.measure of the messure dx on

the interval (0, 1). Then we have

*
dx = h(t) 9—{-
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where h > 0O,

1

h(t) <M if 0<t<3z,
1
dt
[ n(t) =< <M,
1
2

M being a suitable absolute constant.
ILet us denote by duN the swept measure of du on the interval
(0, N). We have
dt dt

t
duy 2 b= b AR = -

as wt is continuous, we have the fact that pu_ 1is of finite energy

MN N
and as U < O .on the support of uN

B m
fu Nan < -fu Naur

Therefore

N

2
<-f U“(b+M)9—:-+M max  |U"(t)]
0

N,
"2-<t.<N

expression which is bounded uniformly in N. Therefore the energy norms
.of the sequence uN are uniformly bounded, n 1is of finite energy.
This proves the lemms and shows élso-the,hypothesiS-of Theorem 2 implies
éﬁq),<ﬁm and we can therefore apply Theorem 4 and get a multiplier in
the wide sense for S.

Obtaining an entire function from a multiplier in the wide sense in-

- volves only routine computations that we shall not develop .here.
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SOME APPLICATIONS OF ENTIRE FUNCTIONS OF

EXPONENTIAL TYPE TO HARMONIC ANALYSIS (II)

On the Closure of a Sequence of Exponential on a Segment

by
*
P. Malliavin

A being a given sequence of complex numbers, the following prob-
lem has been raised by Polya: When is the set {éixx?A£A complete in
the space L2(I) of square integrable functions on the segment I?
This_problem has been studied extensively — in particular, by Paley-
Wiener and by Levinson.

It is obvious that the property of completeness is conserved if
we translate the interval; that is, it depends iny on the length £(I)
of the interval._

Let us recall some classical results. We introduce the counting
function n(x) of the sequence A defined, for x > 0, by n(x) =
number-of A € A such that Re A >0 and |A| < x and defined, for
‘x <‘0, by -n(x) = number of A € A such that Re A <0 and |X| < -Xx.

Then we have (Paley-Wiener)
£(I) < 2x 1im sup %l

implies completeness, and a more elsborate result (Cartwright, Levinson)

* ‘
The results which are summarized here are coming from a joint
work with A. Beurling and these compléte Proofs will appear elsewhere.



n{x+ex)-n(x)

(1) £(I) < 2rn lim llmksup o

e€lo

implies completeness. However, this last result does not settle the
question; it does not give a necessary and sufficient condition for com-

pleteness. A result which could be considered as satisfactory would be

the determination of the number
R(A) = sup of £(1)

. i
for the intervals I for which {ei *}  is complete in L2(I). We

shall call R(A) the radius of totality of A, and our purpose is to

give an explicit determination of R(A).

For this purpose, we shall introduce a density called the effective
density of the éequence A as follows.

Let us denote by Ja the class of differentiable functions k for

vwhich O < k' < a, and let

na(x) inf k(x) for all k € Ja satisfying

k(x) > n(x)

na can be called the shadow function of n for the slope .a: the reason

for this terminology is the following. Let us suppose that the region of
the (x,y) plane defined by ((x,y)|y < n(x)} is opaque. Consider now
an illumination of the plane by parallel rays.of lighf,in the direction a.
Then y = na(x) is the curve separating the dark region of the plane from

the illuminated region.



If a >a' we have n_ < ny s this is a consequence of the
obvious inclusion Ja‘_‘)Ja, .

This implies that if we consider the integral

4+ o0
dx
a(pa) = [ [n (x)-n(x)] —
a
-0 1+x
then there will be a critical slope ao such that for values of a2>a0
the integral Q will converge, while for values of a < a, the inte-

gral will diverge. We call this critical slope a, the effective den-

sity of A, and denote it by De(A):
D_(A) = inf {alo(Aa) <w) .

Before we state our main theorem, we make a preliminary remark. It is

well known (cf. for instance Boas: Entire functions) that if )|Im il-l =o0

then R(A) = o . We dispose this trivial case by assumihg from now on
that’
(3) | Timd <o .

Noy we can state
Theorem 1. . R(A) = 2x De(A) .
To prove the theorem requires, on one hand, a uniqueness theorem, and

on the other, an actual construction. Lét us start with the uniqueness

theorem which is the easier. We have to prove:



Proposition 1. Let £(z) be an entire function such that

|£(2)]| < eb|y| (z = x + iy) .

Let A Dbe a sequence such that

b
A —_
De( ) >1r

\

and such that

£(A) =0 .

Then f vanishes identically.

If £ # 0 it is well known that

+ o0
(&) [ log|f(x)| dx2>.—oo .

-0 1+x

The idea of the proof of Proposition 1 is to evaluate the contri-
bution to this integral from the intervals near which there are many

points of A. For this evaluation the following lemma is useful.

Iemma 1. € and h being two given numbers, € >0, h >0, we shall

Pu ey

denote by A(e,h) the family of functions u(z), subharmonic in the

complex plane, and satisfying

w(z) < |yl z = x + iy

] aw>2+2n
v
€

where 2rdy is the positive measure equal to the Laplacian of u (in

the sense of distributions) and where V_ is the neighborhood of (-1,1)

defined by T n



v = (z| [distance from 2z to the segment (-1,1)] <€)

. +1
¢(h,e) = sup [ u(x)ax for u e A(h,e)
-1

Then for fixed positive h, it is possible to find an € >0 such that
p(h,e) <0 .

Let us postpone the proof of this lemma and show at this point how

it implies Proposition 1. We choose a, a' such that

b

= < a'<a<D(A).

% e
Let {om] be the family of intervals defined by

> = =
{x] na(x) n(x)}) = U 0, o (am, a + Zm)
We have

(5) [ dn = ag

{)[na(x)-n(x)] d—"é— < azi a;a

X
m

Therefore the hypothesis a < De(A) implies
(6) Z —IB =00 ,

Furthermore we can suppose £ = o(am). (Otherwise, the result (1) al-

ready implies that f = 0.) Then



J 1ogle0l &~ a7 [ t0gl2(x)ax
0]

0 x
m m

Let denote by ?J;n an affine transformation which maps the interval

o, onto (-1,+1). Let

end let € be the number determined in Lemma 1 such that
p(h,e) = -4 <O .
Now let [ be the set if integers defined by

Iy ' Iy A
me [ if there are more than a'f points of ?/;n( )

contained in Ve .

Using (5), we find that there exists a constant LY > 0 such that

1 2 =2
2 |Im->:|>nlz am for m;{l‘.

m
|x|€ Om

Together with (3) this implies

£ \2
N m

.a—<oo.
m_l"m

On the other hand, -lemms 1 shows that

[ loglf(x)|ax < -y ti for meTl

o
m

which implies with (&) that



mel m

This contradicts (6) and Proposition 1 is proved.

Proof of Lemma 1. Iet us have fixed h. Then a weak compactness argu-

ment shows that @(h,e) is a continuous function of €. It is therefore

.sufficient to show that
¢(h,0) <O .

By considering, if necessary, %[u(z) + u(z)] we see that we can
suppose that wu(z) = u(z). Let du, be the restriction of dp  to the

real axis. We have

Iir ul is that harmonic function in Im z > O having the same

values on the real axis as u and if u2(z) is defined by

00
u2(z) = ul(z) - [ 1log Il—zet-zldt
0

then we have

u2 <0 for all =z

u2(X) = u(x) for x real

o,

50X > -ax



Now suppose that there exist a function B(z). harmonjc in

Im z> 0, and a positive number ® such that

B < - for |x| <1

(7 B <p<O for 1<|x|<1+52‘-
g =0  for |x| > 1+ g
( %% is bounded on the real axis
! 4 8ﬁ > 0 for x| <1
(7*) % 2 | x|
\

0 for |x| >1 .

A
A

Now we have

From (7) we deduce that

+c0 6112- +1 »
_{) B'5§- < *5-{ (dul-dx) + B f . dx < -8h .

1< |x| <l+3

Now (7') gives

1
oB
(-{ u,) sup 5 < -8h .

which proves the lemma. We have only to prove the existence of a har-
monic function satisfying (7) and (7'). To do this we construct a family
8



(fﬁ(o <3 <1/4) of convex, ¢” curves, symmetric in the y-axis, as
follows. We take the rectangle with vertices at -1, +1, 1-i, -1-i,
and "round off" the corners with € curves such that the points 1-5,
1-i® and -i 1lie on the straight part of it, and call the resulting
curve (5 5+ Llet Fg be the function which maps the interior of ¢6

on the half-plane Im z > 0, such that
Fg(0) == , F(1-38) =1, F(-i) =o0.

Let WS be the inverse function of F6 and denote by B = Im.wa. Then

B will satisfy (7) and (7') if
h
F6(1-6) <l+3.

This inequality can be realized if we have chosen & sufficiently
small, because F8 tends as ® -0 to a mapping function of the rec-

tangle onto the half-plane.

The Construction

To get estimates from above for R(A) we need to construct entire

function f of exponential type vanishing on A satisfying

' +c0
(8) I 12(x)] Pax <o

- 00
and of sufficiently small type.
The condition (8) is not very easy to handle. We shall replace it by
400

(8") | I logle(x)|| =25 < .
-0 1+x




The multiplier theorem of the preceding lecture shows that this
replacement does not'change the problem. That is, if we have a function
f satisfying (8'), then we can multiply it by a function g of arbi-
trary small type and obtain a new function satisfying (8).

The construction is quite long and we cannot give its details here.
But let us describe one aspect of the proof. For simplicity let us sup-
pose that A 1is a real, even sequence and let

na(X)-é(X)

e(x) = %

Then if a > De(A) we have, essentially, that 6 ¢ Ll(R*) where Ll(R*)

denotes the space of summable functions on the positive real axis for the
measure dx/x. The assertion (8') can also be written

log| £(x x

x € Ll(R ) .

-The function f is constructed in such a way that we have, essentially,

on the real axis

e
log| f(x 2 x, dt
=Kx9+P.v., [ 6(3) = .
X l/e _log t t’ t
Here, K is the kernel
K(t) = —2t _ 4 20(t)
1.42 logt

where ® is the characteristic function of the interval (l/e, e).

Since K € Ll(R*), it follows that K % ¢ ¢ Ll(R*). Thus .the problem

10



reduces to the evaluation of the L norm of the above principal value.

1
For that, writing € = log x, we shall prove the following lemma on the

truncated Hilbert transform.

Lemma 2. Let Ql(g) be a function having its support in & > 0 satis-

fying a one-sided Lipschitz condition

Ql(o+§) - ¢l(§,) < ag for T >0

and let E‘m be an increasing sequence tending to + « such that

’ 2

2 (&t )" <w .

Suppose further that
m+l

(9) J <1>l(o)do =0
then

®, and ¢ e Ll(R)
where

<I>l(o) = P.v.-{ o(o+t) % .

The proof of this lemma is straightforward: 1let \]rm be the restriction
-~

of @ to the interval (gm,gm+l), then flxpml is evaluated on the in-

terval (2§m-§m+l, 2§m+l-§m) by using the Schwarz inequality and on the

complement of this interval by using the asymptotic expansion at infinity

of ?[fm of which the first term is zero by reason of (9). These arguments,

11



suitably detailed, prove the lemma.
Now the function &(¢) = G(eg) will not satisfy the hypothesis
of Lemma 2, but it can be shown that it is possible to find a sequence

Al DA, such that for A, the hypothesis of Lemma 2 will be satisfied,

, 1
A) < A) + €.
and such that De( l) De( ) + €
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