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What happens if we drop the positivity condition in the definition of a
dot product?
1. A map which assigns a number B(x,y) to any pair of vectors is called a
bilinear form if it is linear with respect to each argument:

B(αx+ βy, z) = αB(x, z) + βB(x, z),

B(x, αy + βz) = αB(x,y) + βB(x, z).

A bilinear form is called symmetric if

B(x,y) = B(y,x)

for all x,y.
For example, any real scalar product is a symmetric bilinear form. If we

put x = y in bilinear form we obtain a function Q(x) = B(x,x) which maps
vectors to numbers. This function is called a quadratic form corresponding
to B. A symmetric bilinear form can be recovered from its quadratic form
by the formula

B(x,y) =
1

4
(Q(x+ y)−Q(x− y)) . (1)

Indeed,

Q(x+ y) = B(x+ y,x+ y) = B(x,x) + 2B(x,y) +B(y,y), (2)

and

Q(x− y) = B(x− y,x− y) = B(x,x)− 2B(x,y) +B(y,y). (3)

By subtracting and dividing by 4 we obtain (1).
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Exercise 1. If we add (2) and (3), we obtain the “parallelogram theorem”:

Q(x+ y) +Q(x− y) = 2 (Q(x,x) +Q(y,y)) . (4)

Prove that if a continuous function satisfies Q(x) > 0, x ̸= 0, and Q(−x) =
Q(x) and (4), then formula (1) defines a bilinear form. Thus all such functions
are quadratic forms. This is a somewhat difficult exercise. For hints and a
solution, see [1] or [2].

Suppose that we have a finite basis v1, . . . ,vn. Then to each bilinear form
we can associate a square matrix

A = (B(vi,vj))
n
i,j=1.

It is called the Gram matrix of the bilinear form. Gram matrix is symmetric if
and only if the form is symmetric. From now on we only consider symmetric
bilinear forms on real vector spaces.

This matrix defines the form completely: if

x =
∑

xjvj, y =
∑

yjvj,

then
B(x,y) =

∑
i,j

xiyjB(vi,vj) = xTBy,

In particular, in the standard basis we obtain

B(x,y) = xTAy,

and
Q(x) = xTAx.

A quadratic form is called positive definite if Q(x) ≥ 0 for all x, and = 0 only
for x = 0. A symmetric matrix A is called positive definite if the quadratic
form Q(x) = xTAx is positive definite. Bilinear forms corresponding to
positive definite quadratic forms are exactly the scalar products, as previously
defined.

2. What happens to the matrix of the quadratic or bilinear form when we
change the basis? Let x = (xj) be the column vector, and x′ be the columns
of its coordinates in another basis. Then x = Cx′ with a non-singular matrix
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C. Let Q be a quadratic form with matrix A in the standard basis and matrix
A′ in the other basis. Then

Q(x) = xTAx = (Cx′)TACx′ = x′TCTACx′,

so the matrix of Q in the new basis is CTAC.
Notice the difference between the transformation rules of the matrix of a

linear operator and the matrix of a quadratic form!
How can we simplify a matrix of a symmetric quadratic form by choosing

an appropriate basis? The matrix of a quadratic form A is symmetric, so by
the spectral theorem for symmetric matrices, there is an orthogonal matrix
V such that

A = V ΛV −1.

Orthogonal means V −1 = V T . Thus taking C = V −1 we obtain

Λ = CTAC,

which means that every quadratic form can be diagonalized by a an appro-
priate choice of orthonormal basis, in other words, for every quadratic form
there is a basis in which it becomes∑

λj(x
′
j)

2,

with some real numbers λj. One can further simplify by putting yj =
√
|λ|x′

j,
and obtain

Q(x) =
∑

±y2j , (5)

but this last change is in general not orthogonal.
The numbers of pluses, minuses and zeros in this sum cannot be changed

by changes of basis, it depends only on Q, and this triple of non-negative
integers is called the signature of the form Q. By the “number of zeros” we
mean the dimension of the space minus the number of terms in (5).

It is easy to see that the signature depends on Q only. Indeed, the number
of zeros can be defined as the maximum dimension of the subspace such that
the restriction of Q on this subspace is zero. Similarly the number of pluses
can be described as the maximum dimension of a subspace such that the
restriction of Q on them is non-negative minus the number of zeros.

The form is positive definite if and only if it has n (=dimension of the
space) pluses in its signature. Such forms can serve as usual dot products.
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3. Indefinite forms are also useful in many applications, including basic
physics. As an example we consider Minkowski space which is R4 equipped
with the bilinear form

B(u,v) = u0v0 − u1v1 − u2v2 − u3v3,

where we denote vectors in R4 by u = (u0, u1, u2, u3)
T . The corresponding

quadratic form (which is called the Minkowski metric) is

Q(u) = u2
0 − u2

1 − u2
2 − u2

3.

We can define “orthogonality”, and “length” of a vector as we did for the
usual dot product, but with the new definition, the “length” can be imagi-
nary. A vector u is called time-like if Q(u) ≥ 0, in which case the Minkowski
“length” is defined as the positive square root

s(u) =
√
u2
0 − u2

1 − u2
2 − u2

3.

The standard name for this Minkowski “length” s in physics is interval. This
terminology, “time-like”, “interval” etc. will be explained later.

The theory of the usual dot product begins with the Schwarz inequality.
For the Minkowski space we have the

Reverse Schwarz Inequality. If Q(u) > 0 and Q(v) > 0 then

B(u,v)2 ≥ Q(u)Q(v)

with equality only when u, v are proportional.

Proof. We denote u = (x0,x)
T where x = (v1, v2, v3), and v = (y0,y),

where y = (v1, v2, v3), and let x · y = u1v1 + u2v2 + u3v3 be the usual dot
product of 3-vectors. Then

B(u,v) = u0v0 − x · y ≥ |u0v0| − ∥x∥∥y∥ ≥
√
u2
0 − ∥x∥2

√
v20 − ∥y∥2, (6)

where we used the usual Schwarz inequality |x · y| ≤ ∥x∥∥y∥, and the ele-
mentary inequality

ab− cd ≥
√
a2 − c2

√
b2 − d2,

which holds when a > c > 0 and b > d > 0. After squaring we obtain our
inequality.
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From this we obtain the

Reverse Triangle inequality. If Q(v) > 0 and Q(u) > 0 then

s(u+ v) ≥ s(u) + s(v),

where s(u) =
√
Q(u) is the interval.

Proof. With the same notation as before, this is equivalent to√
(u0 + v0)2 − ∥x+ y∥2 ≥

√
u2
0 − ∥x∥2 +

√
v20 − ∥y∥2.

Squaring both sides and canceling equal terms on the right and on the left,
we obtain an equivalent inequality

u0v0 − x · y ≥
√
u2
0 − ∥x∥2

√
v20 − ∥u∥2,

and this is the same as the reverse Schwarz inequality (6).

4. Let us find the linear transformations which preserve the interval. They
are called Lorenz transformations. They are analogous to the orthogonal
transformation which preserve the usual dot product. For simplicity we do
it in 2 dimensional Minkowski space, which is R2 consisting of vectors u =
(t, x)T and equipped with the quadratic form

Q(u) = t2 − x2.

Let A be a matrix of such a transformation with respect to the standard
basis. We look for matrices that satisfy

Q(Au) = Q(u) for all u.

Let

A =

(
a b
c d

)
,

Au =

(
at+ bx
ct+ dx

)
.

So our condition is

(at+ bx)2 − (ct+ dx)2 = t2 − x2,

5



and this must hold for all t and x. We obtain the system

a2 − c2 = 1, (7)

b2 − d2 = −1, (8)

ab− cd = 0. (9)

Notice that ad ̸= 0, this follows from (7), and (8). Dividing (9) by ad we
obtain

c

a
=

b

d
.

Denote this by k. Then
c = ak, b = dk.

Substitute this to (7) and (8) and obtain

a =
ϵ1√

1− k2
, d =

ϵ2√
1− k2

,

where ϵj ∈ {±1}. and finally

b =
ϵ2k√
1− k2

, c =
ϵ1k√
1− k2

.

For our matrix to be real, we need 0 ≤ k < 1. So the general form of a
matrix preserving the interval is

1√
1− k2

(
ϵ1 ϵ2k
ϵ1k ϵ2

)
, −1 < k < 1. (10)

We see that the set of these matrices consists of 4 components, depending on
the signs ϵ1, ϵ2. Transformations with ϵ1 = 1 are called orthochronous, and
transformations with ϵ2 = 1 are called proper. Thus a proper orthochronous
Lorentz transformation has the form

1√
1− k2

(
1 k
k 1

)
, −1 < k < 1. (11)

Notice that the determinant is 1, as in the case of rotations. The class of
transformations we obtained are called boosts. They are special Lorenz trans-
formations: in real, physical space-time of dimension 4, Lorenz transforma-
tions are compositions of boosts and usual rotations of the 3-dimensional
space not affecting the time coordinate.
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5. Minkowski space is interpreted in physics as space-time. Its points cor-
respond to events. The coordinates (u1, u2, u3) are the usual coordinates of
the point where the event occurs, and u0 is the time when it occurs. If some
point moves in the space, we can record its coordinates at every moment,
and obtain a curve in the space time which is called the world-line of the
point. If the point moves with constant speed, this world line is straight.

For example, if a point does not move, its world line will be the u0 axis.
If a point moves along u1 axis with speed k then its world line is a straight
line in the (u0, u1)-plane and the equations of this line are u1 = ku0, u2 =
const, u3 = const.

So far, there is nothing new.
In what follows we neglect for simplicity the coordinates u2, u3 and con-

sider only the motion along the line u1 with constant speed k. So we are
interested only in two coordinates (u0, u1) which we denote by (t, x), so t is
the time coordinate and x is the space (position) coordinate.

Now we discuss the changes of coordinates. Consider two observers (co-
ordinate systems) whose origin is the same, one is moving along the x-axis to
the left with speed k with respect to another. When the observers pass each
other at the origin, they synchronize their clocks. If (t, x) are coordinates of
some event with respect to the first observer, and (t′, x′) are coordinates of
the same event second observer, then according to classical physics

x′ = x− kt

t′ = t. (12)

So the space-time coordinate transformation is described by the matrix(
1 0
k 1

)
. (13)

If some point moves with velocity v, for the first observer, then it moves with
velocity

v′ = v + k (14)

with respect to the moving observer. This is called the law of addition of
velocities.

However, in the very beginning of 20th century it was understood all that
this cannot be true. Two principal facts were established:
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a) All laws of physics must be the same in two frames of reference moving
with respect to each other with constant velocity. This is called the Rel-
ativity Principle, which was formulated by Galileo Galilei, and which is a
fundamental principle of all physics.

b) The speed of light is the same in all frames of reference.

The first principle was very well verified by the whole development of
physics since Newton. The second principle follows from the theory of light
due to Maxwell, which was also very well verified by the end of 19th century.

But the two principles seem to contradict each other, when we use the
addition rule of velocities (14). Direct very precise experiments were made
to measure the velocity of light in different directions. The Earth moves in
space, so if the law of addition of velocities holds, the speed of light in the
direction along the Earth motion would be different from the speed of light
across this direction. The experiment showed that these speeds are equal.

Still a great courage was required to say that equation (14) and the rule
(12) must be modified.

If the speed of light is constant in all coordinate systems then the interval
between any two events must be independent of the coordinate system.

Indeed, suppose that at time 0 we have a flash at the origin. If light will
reach x in time t we have

ct = x, c2t2 − x2 = 0,

where c is the speed of light, and this should be independent of the coordinate
system. We can choose the units so that c = 1. For example we can measure
distances in light-years and time in years. This is where the Minkowski
quadratic form comes from. So we conclude that the correct transformation
is not (12) but the Lorenz boost (8). One may ask, why did not people notice
this before, after all I said that the laws of mechanics were very well verified
by the end of 19th century.

The reason is simple: the speed of light is approximately 3×108m/sec, and
in all applications of classical mechanics we deal with much smaller speeds.
For example the speed of Earth motion around the Sun is approximately
3×105m/sec, so the parameter k ≈ 10−3 in this case, and

√
1− k2 ≈ 1−2k2 ≈

1 with accuracy 2× 10−6.
When k is very small matrix (11) is approximately the same as (13). We
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already see that parameter k is the velocity of one frame of reference with
respect to another.

To obtain the relativistic law of “addition of velocities”, we just compose
two transformations (8), that is multiply their matrices.

Appendix 1. Derivation of Lorenz transformations. Let us look for non-
singular linear transformations(

t′

x′

)
=

(
a b
c d

)(
t
x

)
=

(
at+ bx
ct+ dx

)

which preserve the zero set of the quadratic form

t2 − x2 = 0. (15)

In fact we want to impose the stronger condition that the part of the cone

t2 − x2 > 0

where t > 0 is mapped into itself. This means causality in physics: if an
event at (0, 0) causes some event at (t, x) then we must have t > 0, and this
fact should be independent of the coordinate system.

This means that whenever (15) holds we must have

(t′)2 − (x′)2 = 0.

Equation (15) is equivalent to t = x or t = −x. After a simple computation
we obtain

ab = cd, (16)

a2 − c2 = d2 − b2. (17)

Dividing (16) on ad we obtain

b

d
=

c

a
.

(Think why we cannot have ad = 0). Denote this common value by k, then
we have b = kd, c = ka. Introducing these to (17) we get

a2(1− k2) = d2(1− k2).
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If k = ±1 our matrix will be singular, so this case must be rejected, and we
are left with

a2 = d2.

If a = d, our matrix is

a

(
1 k
k 1

)
. (18)

If a = −d then it is

a

(
1 −k
k −1

)
. (19)

This matrix (19) is a product of (18) with the matrix of reflection in
x = 0:

R =

(
1 0
0 −1

)
, (20)

so it is enough to consider only (18).
Now we make the following physical assumption: our matrices depend on

one parameter, the 1-dimensional vector which is interpreted as velocity, or
more precisely the ratio of velocity to the speed of light. we associate velocity
with parameter k. Let our matrix be A(k). Then the condition of isotropy
of space means

A(k)R = RA(−k).

from this we obtain that a(k) = a(−k) must be satisfied. And finally the
transformations A(k) and A(−k) must be inverse to each other, this gives
a(k) = ±1/

√
1− k2. Finally we have to choose + in this formula to preserve

causality: a vector with positive t must be mapped to a vector with positive
t. So the final form is

1√
1− k2

(
1 k
k 1

)
,

a proper orthochronous Lorentz transformation.

Appendix 2. Addition of velocities. We have

1√
1− k2

1

(
1 k1
k1 1

)
1√

1− k2
2

(
1 k2
k2 1

)
=

1√
1− k2

3

(
1 k3
k3 1

)
,

where

k3 =
k1 + k2
1 + k1k2

. (21)
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Verify this. This is the relativistic law of addition of velocities. We recall
that k = v/c which is very small for the objects that we usually observe. IN
this case the denominator of (21) is almost 1, and we obtain the familiar law
of addition of velocities.

It is interesting to verify that this law is associative and commutative.
To do this, we recall the familiar rule for the hyperbolic tangent of a sum:

tanh(θ1 + θ2) =
tanh θ1 + tanh θ2
1 + tanh θ1 tanh θ2

.

This suggests that we should define a real number θ by the formula

k = tanh θ.

This angle is called rapidity to distinguih it from speed. Recalling the formula

cosh2 θ − sinh2 θ = 1,

we obtain
√
1− k2 = 1/ cosh2 θ, so our matrix (10) of Lorenz transformation

becomes (
cosh θ sinh θ
sinh θ cosh θ

)
,

which is very similar to the rotation matrix.

Appendix 3. Physical interpretation of a time-like interval and the twins
paradox.

Suppose we have two events separated by a time-like interval. Then there
is a coordinate system in which these two events appear in the same place.
Indeed, start with some coordinate system where the events occur at (0, 0)
and (t, x). As the interval between them is time like we have t2−x2 > 0, so if
we choose k = −x/t in (10), the then the coordinates in the new system will
be (0, 0) and (t′, x′) = (

√
t2 − x2, 0). So in the new coordinate system the

events take occur in the same place, and the time between is exactly what
we called the interval.

So in general, the interval is the “proper time” between the events: the
time which passes between them in the coordinate system where they occur
in the same place.

For the system which does not move with uniform speed, the word line
is a curve but the proper time of the system can be defined analogously to
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the length of the curve in geometry:∫
γ
ds. (22)

In Euclidean geometry, ds =
√
dx2 + dy2 is the length element while in

Minkowski geometry ds =
√
st2 − dx2 is the element of the interval. A

curve is called time-like if this interval is real everywhere on a curve. The
world lines of the real objects can be only time-like. Then we obtain from
the reverse Schwarz inequality that he Minkowski length of a time-like curve
is less than or equal to the Minkowski distance between its end points! And
the longest curve between two points is the straight line.

What does this really mean? Suppose that Alice and Bob are twins. At
some point Alice decides to travel. She departs and returns, while Bob stays
in his place. Departure and return of course occur at the same place from
Bob’s point of view, so the interval between them is the time which Bob waits
for Alice’s return. On the other hand for Alice, her proper time of travel is
the integral (22) along her world line, which as we have seen is in general
smaller than the time Bob waits for her. Therefore when Alice returns she
is younger than Bob! This is called the twins paradox.

For example, suppose that Alice’s destination is 4 light years away, and
she travels with the speed k = 1/2. From Bob’s point of view the round trip

takes 2× 4/(1/2) = 16 years. From Alice’s point of view it takes 2×
√
(82 −

42) = 13.8 years. So Alice is 2.2 years younger than Bob when she returns. I
neglected the time Alice needs for acceleration to and deceleration from the
speed of c/2 = 150, 000 kilometers per second.
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