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Abstract

Bloch’s Theorem is extended to K-quasiregular maps Rn → Sn,
where Sn is the standard n-dimensional sphere. An example shows
that Bloch’s constant actually depends on K for n ≥ 3.

Let B(a, r) := {x ∈ Rn : |x − a| < r} be an open ball, 0 < r ≤ ∞.
Consider an open discrete map f : B(0, r) → M where M is a Riemannian
manifold of dimension n. For every x ∈ B(0, r) we define df (x) as the radius
of the maximal open ball B ⊂ M centered at f(x), such that a continuous
right inverse φ with the property φ(f(x)) = x exists in B. If there is no
such ball df (x) = 0. The Bloch radius of f is defined as

B(f) := sup
x∈B(0,r)

df (x).

The cases of principal interest are M = Rn with the standard Euclidean
metric |dx|, and M = Sn, the sphere with the standard spherical metric
2|dx|/(1 + |x|2), so that the diameter of the sphere in this metric is π.
We denote the corresponding Bloch radii by Be(f) and Bs(f), respectively.
Notice that Bs(f) ≤ 2Be(f), if we consider the push forward of the spherical
metric to Rn via the stereographic projection. Notation B(f) will be used
in statements which are true for both metrics.

A family F of continuous maps B(0, r) → M is called normal if every se-
quence in F contains a subsequence which converges uniformly on compacta.
In the case of compact M a family is normal if and only if its restriction
to every compact in B(0, r) is equicontinuous [1]. The classical theorem of
Bloch [3] can be stated as:
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Theorem A Every family of holomorphic maps C ⊃ B(0, 1) → C with

bounded Euclidean Bloch radius is equicontinuous with respect to the Eu-

clidean metric.

A related result belongs to Valiron [13]:

Theorem B Every non-constant entire function has infinite Euclidean Bloch

radius.

The case of spherical metric was first considered by Minda [8]:

Theorem C (i) There exists an absolute constant b0 > 0, such that the

family of all meromorphic functions C ⊃ B(0, 1) → C whose spherical Bloch

radius is at most b0 − ǫ, is normal for every ǫ ∈ (0, b0).
(ii) For every non-constant meromorphic function f : C = B(0,∞) → C we

have B(f) ≥ b0.

It is conjectured that b0 = arccos(1/3) ≈ 70◦32′. Some recent results about
precise constants are contained in [5]. The proofs of Theorems A-C are
usually based on specific properties of holomorphic functions, like Taylor
series expansion ([3, 13]) or on Gauss curvature considerations [2, 8].

In this paper we show that all results mentioned above, as well as their n-
dimensional generalizations follow from a simple normal families argument,
which is due to Zalcman [14] in dimension 2 and to Ruth Miniowitz [9] in
arbitrary dimension. The survey [15] describes other applications of this
tool.

The natural framework in dimensions greater than 2 is the class of
quasiregular maps (see [10, 11] for the general theory of these maps). We re-
call that a continuous map is called K-quasiregular if its generalized partial
derivatives are locally summable in degree n and the derivative Df satisfies

‖Df (x)‖n ≤ K| det Df (x)| almost everywhere.

Non-constant quasiregular maps are open and discrete, according to [10,
II §6.3]). Apparently they were first recognized by Bochner [4], as early
as in 1946, as the appropriate class for extension of Geometric Function
Theory to higher dimensions, the point of view widely shared today. Bochner
showed that Theorem A extends to K-quasiregular maps Rn ⊃ B(0, 1) →
Rn, whose coordinates are harmonic functions. For further results in this
direction see [7].

Theorem 1 (i) There exists a constant b(n, K) > 0, such that the family

of all K-quasiregular maps Rn ⊃ B(0, 1) → Sn, whose spherical Bloch radii
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are at most b(n, K) − ǫ, is normal for every ǫ ∈ (0, b(n, k)).
(ii) For every non-constant K-quasiregular map f : Rn → Sn we have

Bs(f) ≥ b(n, K).
(iii) Every family of K-quasiregular maps Rn ⊃ B(0, 1) → Rn with bounded

Euclidean Bloch constant is equicontinuous with respect to the Euclidean

metric.

(iv) Every non-constant K-quasiregular map f : Rn → Rn satisfies Be(f) =
∞.

Remarks The proof of Theorem 1 is a pure existence proof. It is desirable
to find some way to estimate b(n, K) effectively for n ≥ 3. For n = 2 the
spherical Bloch constant b0 = b(2, K) is actually independent of K. This
follows from the fact that every quasiregular map f : C → C can be factored
as f = g ◦ φ, where g is meromorphic in C, and φ is a homeomorphism,
and it is clear that B(f) = B(g). The situation is different for n ≥ 3 as
the following example shows. It is similar to the situation with “Picard’s
constant” which is equal to 3 for quasiregular maps in dimension 2, but
depends on K in higher dimensions, as the example of Rickman [12] shows.
Smooth1 quasiregular maps in dimension at least 3 are locally injective, and
thus by a theorem of Zorich [11] smooth quasiregular maps Rn → Rn are
bijective, so (ii) and (iv) are immediate for smooth quasiregular maps.

Example 1 For every n ≥ 3 and every ǫ > 0 there exists a quasiregular map

Sn → Sn of degree 2, such that Bs(f) < ǫ. There exists also an infinitely

differentiable open discrete map f : Sn → Sn with Bs(f) < ǫ.

Consider the standard embedding Sn−2 ⊂ Sn, and introduce the cylindri-
cal coordinates on the complement D := Sn\Sn−2 = {(r, θ, y) : r > 0, θ ∈
[0, 2π), y ∈ Sn−2}. The “winding map” D → D given in cylindrical coordi-
nates by (r, θ, y) 7→ (r, 2π{θ/π}, y), where {.} stands for the fractional part,
extends by continuity to the 2-quasiregular map g : Sn → Sn, which is locally
homeomorphic in D, and locally 2-to-1 at every point of Sn−2. If B ⊂ Sn is
a ball then a right inverse to g in B exists if and only if B ∩Sn−2 = ∅. Now
we postcompose g with a diffeomorphism h : Sn → Sn such that h(Sn−2)
forms an ǫ-net, that is dists(x, h(Sn−2)) < ǫ for every x ∈ Sn. It is clear that
Bs(h◦g) < ǫ. To construct an infinitely smooth map with similar properties,
we replace the winding map by (r, θ, y) 7→ (r2, 2π{θ/π}, y). �

The normality argument mentioned above is the following

1
C

3 for n = 3 and C
2 for n ≥ 4, see [11, p. 12]
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Lemma 1 ([9]) Let F be a family of K-quasiregular maps Rn ⊃ B(0, 1) →
Sn which is not normal. Then there exist r ∈ (0, 1) and sequences fm ∈
F , xm ∈ B(0, r) and ρm > 0, ρm → 0, such that gm(x) := fm(xm +
ρmx) → f(x) 6= const uniformly on compacta in Rn, and f : Rn → Sn is

K-quasiregular. Moreover, we have for x1, x2 ∈ B(0, R)

dist(f(x1), f(x2)) ≤ 2(1 + R2)α|x1 − x2|
α, where α = (K)1/(1−n)

and

diamf(B(0, 1)) ≥ δ > 0,

where diam is the diameter with respect to the spherical metric, and δ is a

constant depending only of K and n.

Proof of Theorem 1. First we notice that Bs(f) > 0 for every open
discrete map. Recall that x ∈ B(0, 1) is called critical if there is no neigh-
borhood V of x such that f |V is a homeomorphism onto its image. The set
of all critical points is closed and its topological dimension is at most n − 2
[6]. So there is a point a ∈ B(0, 1) such that the restriction of f onto some
ball B(a, r) is a homeomorphism onto the image, so Bs(f) > 0.

Second we notice the following semicontinuity property of the Bloch’s
radius: if gm → f uniformly on compacta then

B(f) ≤ lim inf B(gm). (1)

To prove this property we fix arbitrary ǫ ∈ (0, B(f)/4) and put r := B(f)−
2ǫ. Then there exists a ball B(a, r+ ǫ) in which a continuous right inverse φ
to f is defined. Put D := φ(B(a, r)), this is an imbedding of the closed ball.
As gm → f uniformly on D, we conclude for large values of m that gm(∂D) is
contained in ǫ-neighborhood of ∂B(a, r). So the degree µ(y, gm, D) is defined
for every y ∈ B(a, r − ǫ) [10, II, §2]. Since the degree µ(y, f, D) for y /∈
f(∂D) is continuous with respect to f , we conclude that limµ(y, gm, D) =
µ(y, f, D) = ±1 for every y ∈ B(a, r − ǫ). This means that for large m the
restrictions gm|D have continuous right inverses in B(a, r − ǫ) so B(gm) ≥
r − ǫ ≥ B(f) − 3ǫ, which proves (1).

To prove (i) in Theorem 1 by contradiction, we assume that for every ǫ >
0 the family Fǫ consisting of all K-quasiregular maps f : Rn ⊃ B(0, 1) → Sn

with Bs(f) ≤ ǫ is not normal. Applying Lemma 1 to each Fǫ we obtain a
family {fǫ : ǫ > 0} of quasiregular maps Rn → Sn. This family is normal
and has no constant limit functions because of the uniform estimates in
Lemma 1 and we have B(fǫ) ≤ ǫ. So we can find a convergent sequence
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fǫk
→ f 6= const with B(fǫk

) → 0. We have Bs(f) > 0 because f is open,
and this contradicts (1).

To prove (ii) it is enough to notice that the family {x 7→ f(2nx) : n ∈ N}
with a non-constant function f is never normal in B(0, 1).

To prove (iii) we fix arbitrary M > 0 and consider the family FM con-
sisting of all K-quasiregular maps Rn ⊃ B(0, 1) → Rn with the property
Be(f) ≤ M . Put κ = b(n, K)/(3M), where b(n, K) is the constant from
(i). Then all maps from the new family F∗ = {κf : f ∈ FM} satisfy
Bs(f) ≤ 2Be(f) < b(n, K), and thus by (i) F∗ is equicontinuous with re-
spect to the spherical metric.2 Now we fix a compact E ⊂ B(0, 1) and
ǫ ∈ (0, π). We choose δ > 0 such that for x, y ∈ E from |x − y| < δ follows
dists(f(x), f(y)) < ǫ for every f ∈ F∗. Let f ∈ F∗. Then g = f −f(x) ∈ F∗

because addition of a constant changes neither the Bloch radius nor K.
So we have dists(g(x), g(y)) = dists(0, g(y)) < ǫ that is |f(x) − f(y)| =
|g(y)| ≤ tan(ǫ/2). So for the members of the original family FM we obtain
|f(x) − f(y)| < (3M/b(n, K)) tan(ǫ/2). This proves equicontinuity with
respect to the Euclidean metric.

Now (iv) follows from (iii) exactly like (ii) follows from (i). �

The author thanks Mario Bonk for his comments on this paper.
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