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Abstract

The paper contains a simplified version of Stahl’s proof of a con-

jecture of Bessis, Moussa and Villani on the trace of matrices A + tB

with Hermitian A and B.
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This paper presents a simplified version of the proof of Herbert Stahl’s
theorem on the BMV conjecture [5]. The proof preserves all main ideas of
Stahl; the simplification consists in technical details.

Theorem. Let A and B be two n×n Hermitian matrices. Then the function

f(t) = Tr eA−tB (1)

has a representation

f(t) =
∫ bn

b1

e−stdµ(s), (2)

where µ is a non-negative measure, b1 and bn are the smallest and the largest
eigenvalues of B.

If B is positive semi-definite, it follows that (−1)nf (n) ≥ 0. Such func-
tions are called absolutely monotone. The result was conjectured in [1]. Two
equivalent statements for positive semi-definite matrices B are that the poly-
nomial t 7→ Tr(A + Bt)p, p ∈ N, has all non-negative coefficients, and that
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the function t 7→ Tr(A + tB)−p, p ≥ 0 is absolutely monotone, [2]. Before
the work of Stahl, Theorem 1 was known for 2× 2 matrices. A survey of the
previous attempts t prove it is contained in [3]. The proof of Stahl, which
is explained in these notes, is completely elementary: all needed tools were
available in the middle of XIX century.

Without loss of generality, one can assume that B is a diagonal matrix
with eigenvalues bn > bn−1 > . . . > b1 > 0. This is achieved by simultaneous
conjugacy of A and B, adding a scalar to B, and approximating the resulting
B with a matrix whose eigenvalues are distinct.

Now eigenvalues λ of A − tB are determined from the equation

det(λI − A + tB) = 0.

This determinant is a polynomial in two variables t, λ. We take t out of the
determinant, and denote y = λ/t, x = 1/t, then we obtain a polynomial
equation of the form

0 = det(yI + B − xA) =
n

∏

j=1

(y + bj − xaj,j) + O(x2),

where O(x2) is a polynomial divisible by x2.
This implies that there are n holomorphic branches of the multivalued

implicit function λ(t) in a neighborhood of infinity, which satisfy

λj(t) = −bjt + aj,j + O(1/t), t → ∞, (3)

and all λj are real on the real line. Moreover, each of these branches has
an analytic continuation in a region containing the real line, according to
Rellich’s theorem [4, Thm XII.3]. The algebraic function λ(t) is defined on
a Riemann surface S with n sheets spread over the Riemann sphere. This
Riemann surface is not necessarily connected. It has n unramified sheets
over a region that contains the real line and a neighborhood of infinity.

Special case. Suppose that A is also diagonal, then the O(1/t) terms in (3)
can be omitted, and we obtain

f(t) =
n

∑

j=1

eaj,je−bjt =
∫

∞

0
e−st

n
∑

j=1

eaj,jδbj
(s)ds. (4)

Thus µ is a discrete measure with positive atoms at the eigenvalues of B.
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In the general case, the discrete component of µ is the same, and the
continuous component is a positive function on (b1, bn).

Stahl figured out the following explicit expression for the density.

Proposition 1. The measure

dµ(s) =





n
∑

j=1

eaj,jδbj
(s) + w(s)



 ds (5)

where

w(s) = −
∑

j:bj<s

res∞eλj(ζ)+sζ =
1

2πi

∑

j:bj<s

∫

C
eλj(ζ)+sζdζ, (6)

satisfies (1) and (2). Here C is any circle centered at the origin, of sufficiently
large radius, described counterclockwise.

Stahl writes that it was non-trivial to guess (5), (6). So we include an
heuristic argument which could be used to guess this formula. Inversion
formula for the Laplace transform gives the density in the form

1

2πi

∫

L
f(ζ)esζdζ,

where L is a vertical line sufficiently far to the right. For |ζ| large enough,
the expression under the integral equals

esζf(ζ) =
n

∑

j=1

eλj(ζ)+sζ .

As λj(ζ) = −bjζ + . . . , the summands for which bj > s are exponentially
decreasing in the right half-lane, therefore, for these summands the line L
can be shifted to the right, and all these summands vanish. The rest of the
summands exponentially decrease to the left, and for them, the contour can
be bent to the left to obtain a circle C.

Of course one can give a rigorous justification of these arguments, but
once the formula is guessed, it is easy to verify it directly, and we reproduce
Stahl’s argument.

Lemma 1. For every s, we have

n
∑

j=1

∫

C
eλj(ζ)+sζdζ = 0.
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Indeed, this is an integral of an entire function over a closed contour.

It follows that the density w defined by (6) is zero for s > bn, and it is
evidently zero for s < b1.

Proof of Proposition 1. We compute the Laplace transform of the density
w defined by (6).

∫

∞

0
e−stw(s)ds =

n−1
∑

k=1

∫ bk+1

bk

e−tsw(s)ds =:
n−1
∑

k=1

Ik(t).

We fix t > 0 and deform the contour C in (6) so that the positive ray is
outside C. This is possible to do because all λj are holomorphic in a region
containing the real line and C. Thus t is outside of the deformed contour C ′.
According to (6), we have

Ik(t) =
∫ bk+1

bk

k
∑

j=1

1

2πi

∫

C′

eλj(ζ)+s(ζ−t)dζds.

By changing the order of integration and the order of summation, we obtain

n−1
∑

k=1

Ik(t) =
n−1
∑

j=1

1

2πi

∫

C′

eλj(ζ)
∫ bn

bj

es(ζ−t)dsdζ

=
n−1
∑

j=1

1

2πi

∫

C′

eλj(ζ)
(

ebn(ζ−t) − ebj(ζ−t)
) dζ

ζ − t
.

The last expression is transformed using Cauchy’s formula and the fact that
t is outside C ′. We have

n
∑

j=1

∫

C′

eλj(ζ)ebn(ζ−t) dζ

ζ − t
= 0,

similarly to Lemma 1, so

n−1
∑

k=1

Ik(t) = −
n

∑

j=1

1

2πi

∫

C′

eλj(ζ)+bj(ζ−t) dζ

ζ − t
.

Using (3), we write λj(ζ) = −bjζ + aj,j + rj(ζ), where rj(∞) = 0, and apply
Cauchy’s formula again. We obtain for every j:

−
1

2πi

∫

C′

eλj(ζ)+bj(ζ−t) dζ

ζ − t
= −

e−bjt+aj,j

2πi

∫

C′

erj(ζ) dζ

ζ − t
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= e−bjt+aj,j

(

erj(t) − 1
)

= eλj(t) − e−bjt+aj,j .

Adding these expressions for j = 1 . . . n and comparing with (5) and the
second equation in (4), we obtain Proposition 1.

It remains to prove that (6) is non-negative for every s. Let us fix s and
k so that bk < s < bk+1. The idea of Stahl, is to replace the contour of
integration in (6) by an ingeniously chosen homologous contour, on which
the integral is non-negative simply because the integrand is non-negative.

We recall that S is a (possibly disconnected) Riemann surface spread over
the ζ-sphere. We denote a generic point of S by p, and let π : S → C be
the projection to ζ-plane. Then λ is a meromorphic function on S whose all
poles are simple and lay over ζ = ∞.

Asymptotic expressions (3) imply that there exists R > 0 such that for
all j ≤ k the functions

λj(ζ) + sζ = (s − bj)ζ + . . . (7)

are holomorphic for |ζ| > R, real on the real line and have strictly positive
derivatives for ζ > R and ζ < −R, while for j > k they have strictly negative
derivatives. By increasing R, if necessary, we achieve that for |ζ| > R/2 and
j ≤ k, we have that Im (λj(ζ) + sζ) has the same sign as Im ζ. And for
|ζ| > R/2 and j > k, Im (λj(ζ) + sζ) has the opposite sign from Im ζ.

The surface S has an anti-conformal involution, induced by complex con-
jugation. The set of fixed points of this involution consists of n curves,
π-preimages of the real line. These curves break S into two halves S+ and
S− which are mapped onto each other by the involution. Projections of these
halves are the upper and lower half-planes.

We set C = {ζ : |ζ| = R} in (6), where R was just chosen.
Consider the open sets

D+ := {p ∈ S : |π(p)| < R, Im π(p) > 0, Im (λ(p) + sπ(p)) > 0},

D− := {p ∈ S : |π(p)| < R, Im π(p) < 0, Im (λ(p) + sπ(p)) < 0},

and
D = int

(

D+ ∪ D−

)

.

The set {p ∈ S : |π(p)| = R} consists of n disjoint circles Cj ⊂ S which we
label according to the branches of λj in (7), so that λ = λj on Cj. According
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to the paragraph after (7), the circles Cj with j ≤ k belong to ∂D while the
Cj with j > k are disjoint from D.

Let D1 be a component of D whose boundary contains some circles Cj.
1

We are going to prove that

∑

j:Cj⊂∂D1

∫

Cj

eλ(p)+sπ(p)dπ(p) > 0, (8)

where the circles are oriented counterclockwise, which agrees with their ori-
entation as part of ∂D. Adding these relations over all components of D
will prove the theorem. Indeed, each circle Cj with j ≤ k belongs to the
boundary of exactly one component of D, and circles Cj with j > k do not
belong to the boundary of D.

Each component D1 of D is a Riemann surface of finite type, whose
boundary consists of several curves parametrized by circles. This parametriza-
tion is piecewise smooth, but may be neither smooth nor injective. We call
these curves the boundary curves of D1. Our choice of R guarantees that the
part of the boundary of D1 that projects in C is exactly the chain on which
the integration is performed in (8). Consider the rest of the boundary ∂D1

which projects into |ζ| < R.

Lemma 2. No boundary curve of D over {ζ : |ζ| < R} can project into the
open upper or lower half-plane.

Indeed suppose that γ is a boundary curve whose projection does not
intersect the real axis. It is oriented in the standard way, so that D is on
the left. Suppose without loss of generality that γ projects to the upper
half-plane. Let g(p) = λ(p) + sπ(p). As Im g > 0 in D+, and Im g = 0 on γ,
we conclude that the normal derivative of Im g has constant sign on γ. Then
by the Cauchy-Riemann equations, the tangential derivative of Re g along γ
is of constant sign, which is impossible because γ is a closed curve, and Re g
is single valued on γ.

Thus every boundary curve of D1 intersects the real line. Let γ be a
boundary curve of D1 which projects into {ζ : |ζ| < R}. By Lemma 2, γ is
mapped into itself by the involution, so it consists of two symmetric pieces:
one piece γ+ projects in the upper half-plane, another γ− to the lower half-

1One can prove using the maximum principle that every component of D has some Cj

on the boundary, but we are not using this fact.
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plane. At all endpoints p of γ+ or γ− we have ℑπ(p) = 0. We have

eg = eRe g+iIm g = eRe g (cos(Im g) + i sin(Im g)) .

Since Im g = 0 on γ, and Re g is increasing, we conclude that φ(t) := eg(γ(t))

is real and increasing function of the natural parameter t on γ+. Thus

1

2πi

∫

γ
eg(p)dπ(p) =

1

2πi

(∫

γ+

+
∫

γ−

)

φ(t)(dξ(t) + idη(t))

=
1

π

∫

γ+

φ(t)dη(t) = −
1

π

∫

γ+

η(t)dφ(t) < 0,

where we integrated by parts using η(t) = 0 on the endpoints of γ+.
As the integral of the holomorphic 1-form over the boundary equals zero,

∫

∂D1

egdπ = 0

by Cauchy’s theorem, the contribution to the integral from the part of ∂D1

which projects to {ζ : |ζ| < R} is the negative of the contribution of the part
of ∂D1 over C. This completes the proof of (8) and of Theorem 1.
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