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Let

f =
∞∑

n=−m

anz
n (1)

be a formal Laurent series. (Possibly not convergent anywhere). I recall that
such series can be added and multiplied without any reference to convergence.
They can be also differentiated by the usual rules. We cannot plug a complex
number z into such series, except when m ≥ 0 and z = 0. Notice that we
will never plug anything else in what follows!

We define the residue as

res f = a−1.

Notice that res f ′ = 0 for every series of the form (1). It follows that

res (fg′) = res (fg)′ − res (f ′g) = −res (f ′g), (2)

which resembles the “integration by parts formula”. The usual formula

res f =
1

(m− 1)!

dm−1

dzm−1
(zmf)|z=0 (3)

also holds.
Now consider a formal Taylor series which begins with c1z:

φ(z) =
∞∑
n=1

cnz
n, c1 6= 0. (4)

Notice that composition f ◦ φ of two series of the forms (1) and (4) can be
defined: if we substitute one into another, the coefficients of the resulting

1



series can be computed without any consideration of convergence: they are
finite combinations of the coefficients of the two original series. Verify this.
(Composition of two arbitrary formal series of the form (1) cannot be defined!)

Next, prove that the set of all series of the form (4) is a group with respect
to composition. That is the composition is associative and every series of the
form (4) has an inverse. The neutral element of this group is of course the
series f(z) = z.

Our goal is to obtain an explicit formula for the coefficients of the com-
positional inverse. Our main tool is the following “change of the variable”
property:

res [(f ◦ φ)φ′] = res f. (5)

Prove this! Of course, if the series were convergent, you could use the relation
with the integral

res f =
1

2πi

∫
|z|=ε

f(z)dz.

Then our formula woulod follow follows by the change of the variable in this
integral. However (5) is true and is easy to verify for all formal series, and I
recommend that you verify it by an algebraic manipulation.

Formula (5) suggests that the residue is defined for a differential rather
than a function, so it is better to write res [f(z)dz].

Now suppose that φ is given by (4), and

φ−1 =
∞∑
n=1

bnw
n,

and we want to find a formula for the bn in terms of cn. We write

bn = res
φ−1

wn+1
= res

(
z
φ′

φn+1

)
,

where we made the change of the variable w = φ(z) and used (5). Using the
“integration by parts formula” (2) we can continue:

bn = res

(
z
φ′

φn+1

)
=

1

n
res

1

φn
,

and finally, using (3) we obtain

bn =
1

n!

dn−1

dzn−1

(
zn

φn

)∣∣∣∣
z=0

. (6)
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This is called the Bürmann–Lagrange formula for the coefficients of the in-
verse function.

Example. Let φ(z) = ze−z. Show that the branch of the inverse function
that maps 0 to 0 is given by the series

φ−1(w) =
∞∑
n=1

nn−1
zn

n!
.

Of course, all series are convergent in this example. There are actually
few examples where the Bürmann–Lagrange formula gives a simple answer in
closed form. However, for convergent series, it always gives a representation
of the coefficients in the form of an integral, and this can be useful in the
study of the asymptotic behaviour of these coefficients. But this is another
story.

Example (Hurwitz). Expand the branch φ−1 which takes 0 to 0:

φ(z) = (ez − 1)e−z.

Example (Hurwitz). Expand the branch φ−1 which takes 0 to a:

φ(z) = 2
z − a
z2 − 1

.

Example (MO) Solve the equation z5−z+a = 0 in the form of power series

z = −
∞∑
k=0

(
5k

k

)
a4k+1

4k + 1
.

Solution. Write the equation in the form

φ(z) := z − z5 = a,

and apply (6) to z = φ−1(a). The n-th coefficient of φ−1 will be

1

n!

dn−1

dzn−1
1

(1− z4)n

∣∣∣∣
z=0

which is equal to 1/n times the coefficient at zn−1 in the expansion

(1 + z4 + z8 + . . .)n.

3



This coefficient is different from 0 only if n = 4k + 1, and is equal to the
coefficient at wk in the expansion of

1

(1− w)4k+1
=

1

(4k)!

d4k

dw4k

1

1− w

=
1

(4k)!

d4k

dw4k
(1 + w + w2 + . . .),

where we set w = z4. So and we obtain that this coefficient is

1

(4k)!

d4k

dw4k
w5k =

(
5k

k

)
.

So the 4k + 1-th coefficient of our function is

1

4k + 1

(
5k

k

)
.

Exercise. Find the radius of convergence of this series.

The Burmann–Lagrange formula can be generalized: one can find the
expansion of f ◦ φ−1, where f is a given analytic function. Assuming φ(0) =
0, φ′(0) 6= 0 and

f(z) =
∞∑
n=0

anz
n,

we denote by bn the coefficients of f ◦ φ−1. Then we have

bn = res

[
f ◦ φ−1(u)

un+1
du

]
= res

[
f(z)

φn+1(z)
φ′(z)dz

]
.

“Integrating by parts”, and applying the formula for the residue, we obtain

bn = − 1

n
res [φdg−n] =

1

n
res [g−ndφ]

bn =
1

n!

dn−1

dzn−1

[(
z

φ(z)

)n
f ′(z)

]
.

4



Example. Taking φ(z) = ze−βz and f(z) = eαz, and putting z = 1, we
obtain an interesting identity

∞∑
n=0

α(α + βn)n−1e−(α+βn)/n! = 1,

which is valid for all α and |βe−β| < 1. The sequence in the left hand side is
called the Poisson-type distribution.
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