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Until 1866, there was no way to send a message from England to America
which would arrive in less than few weeks.

The first successful transatlantic cable was laid down in 1866. The story
of this cable reads like a Jules Verne novel1. If I were on Jules Verne’s place,
I’d rather describe this story then invent similar fictional stories.

Besides exciting adventures, the story of the Cable has many scientific
aspects. Let us consider a mathematical model of a long cable. I follow [4]
but all this math is due to William Thomson2 and George Stokes.

What should the parameters of such a long cable be? What happens to
the transmitted signal?

Let x be the space coordinate, and t the time. Let u(x, t) be the potential
(voltage) and i(x, t) the current at the point x at time t. Small piece ∆x of
the cable has some inductance L∆x, capacity C∆x, passive resistance R∆x,
and baking conductance (conductance through the insulation) G∆x. The
quantities L,C,R are measured in farad/meter, henry/meter, ohm/meter
and 1/(ohm.meter), respectively.

Generalized Ohm’s laws give

u(x, t)− u(x+ ∆x, t) = L
∂i

∂t
∆x+Ri∆x,

i(x, t)− i(x+ ∆x, t) = C
∂u

∂t
∆x+Gu∆x.

1One of the main characters of Jules Verne’s novel “Mysterious island”, engineer Cyrus
Smith had a prototype: Cyrus Fields, the main character of the real Cable story.

2William Thomson, 1st baron Kelvin. A great XIX century mathematician, physicist,
and engineer. He was made baron Kelvin by Queen Victoria for his contribution to this
Transatlantic Cable enterprise.
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Dividing by ∆x, we obtain the following differential equations{
ux + Lit +Ri = 0,
ix + Cut +Gu = 0.

To separate u and i, we apply ∂/∂x to the first equation, and ∂/∂t to the
second one, and eliminate i and its derivatives using ixt = itx, to obtain

uxx = LCutt + (CR +GL)ut +RGu = 0.

This is called the Telegraph Equation. It is some mixture of heat and wave
equations.

In a good cable, L and G are negligible, so we obtain a heat equation

ut = kuxx, where k =
1

RC
. (1)

Consider this equation on a half-line x ≥ 0, with zero initial conditions and
boundary condition f(t):

u(0, t) = f(t), u(x, 0) = 0. (2)

This describes a transmission of a signal f(t) from an endpoint of a very long
cable. Here f(t) represents the signal which we are trying to transmit.

Equation (1) with initial and boundary conditions (2) can be exactly
solved, see “Applications of Fourier Transform”, section 3.

u(x, t) =
x

2
√
πk

∫ t

0
f(t− s)s−3/2 exp

(
− x2

4ks

)
ds.

This is a convolution of f with the lateral heat kernel

L(x, t) :=
x

2
√
πk
t−3/2e−

x2

2kt , t > 0,

and L(s, t) = 0 for t < 0.
To understand the properties of this solution, let us introduce the uni-

versal (independent on any parameters) function

g(t) = t−3/2e−1/t. (3)
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and recall the scaling operation which does not change the integral: gδ(t) :=
δ−1g(t/δ). Then a straightforward calculation shows that

L(x, t) =
1√
π
gδ(t)

with

δ =
x2

4k
=

1

4
x2RC. (4)

This means the following: suppose we want to transmit a short impulse, say
some positive function f(t) with support (0, ε). This signal arrives to the
point x as a convolution (1/

√
π)f ? gδ, where g is the universal function (3)

and δ is proportional to x2RC. So the signal that arrives to x has time
duration

∼ εx2RC,

that is it is spread in time, and this spread grows quadratically with the
distance. This is the famous “square law” of Thomson.

This means that you cannot transmit too quickly. It took many hours to
transmit the few sentences in the first telegrams sent by the first transatlantic
cable. You cannot do anything with the factor x2 in δ; it is the distance to
which you want to transmit the signal.

Only R and C are at your disposal, and they depend on the characteristics
of the cable. I recall that R is passive resistance, per unit of length, and it
is proportional to the cross-section area, that is to r−2, where r is the radius
of the cable. And C is capacity per unit of length which is proportional to
r. So RC is proportional to 1/r and a thick cable will transmit faster.

The scientific advisers of the first cable project did not understand this;
for some reasons they thought that capacity is more important and that thin
cable will do the job. Of course the investors were very happy with this
theory, since the cost increases dramatically with the thickness of the cable.

When they saw the frustratingly slow rate of transmission, they started
to increase voltage... and burned the cable in few weeks after the start of the
operation. And the whole enterprise was bankrupt.

The theory which I explained above belongs to William Thomson and
George Stokes.

The enterprise was saved by the British government3. Thomson was ap-
pointed the new scientific adviser. With the money from British government

3During those few days that the first cable worked they managed to transmit one
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the company hired the largest existing ship to lay a new cable. Thomson
designed a super-sensitive galvanometer for receiving the messages. And the
new cable was a great success. Thomson was knighted and since then he is
known as Lord Kelvin.

The modern theory of cables, taking into account the full telegraph equa-
tion, not just its approximation (1) is due to Oliver Heaviside, an electric
engineer who made very substantial contribution to mathematics. The heat
equation gives a good approximation when we neglect inductance (see the
derivation above), and this is OK when we deal with very low frequencies.
For high frequencies, the telegraph equation resembles more the wave equa-
tion than the heat equation. Old telegraphs transmitted very low frequency
signals, corresponding to dots and dashes of the Morse code entered manu-
ally.

Such low frequency signals are rarely used today. One exception is VLF
(Very Low Frequency) systems which are used in communication with sub-
marines. Water is impenetrable for higher frequency radio signals.

When we talk about “long cables”, this is just a convenient terminology.
I had a friend, a computer scientist, working for a company which designed
computer chips. Once he started asking me about heat and telegraph equa-
tions, and from his questions I understood that he needs this “long cable”
theory of Stokes, Kelvin and Heaviside. I was surprised: how are “long ca-
bles” related to computer chips design? He explained me that the “cable”
has length of the order 10−2mm but it is so thin that has to be considered
“long”.

It is remarkable that the authors of the article on Cable theory in Wikipedia
apparently think that “Cable theory” is a part of neuroscience.

This demonstrates the universality of mathematical methods. Same math-
ematics describes transatlantic cables, microscopic conductors inside a chip
and neurons in an animal brain.
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