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Abstract

We discuss a class of regions and conformal mappings which are

useful in several problems of approximation theory, harmonic analysis

and spectral theory.
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1 Introduction

We begin with two classical problems which serve as motivation. Then in
sections 2–5 we describe some classes of regions, corresponding conformal
maps and entire and subharmonic functions. In sections 6–7 we discuss
various problems where these classes appear.

1. Polynomials of least deviation from zero. Let E ⊂ R be a compact set
on the real line, and Pn a polynomial with minimal sup-norm Ln = ‖Pn‖E

among all monic polynomials of degree n.
If n < cardE, then Pn is unique and can be characterized by the following

properties:
(i) Pn is real, and all its zeros are real and simple,
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(ii) For every pair of adjacent zeros x1 < x2 there is a point y ∈ (x1, x2)∩E
such that |Pn(y)| = Ln.

(iii) At the points a1 = inf E and a2 = supE, we have |Pn(aj)| = Ln.
For a simple variational argument which proves (i)–(iii) see [3, 47]. These

polynomials Pn can be represented in terms of special conformal maps.
Let m, k be integers, k−m = n, and let D be a region obtained from the

half-strip
{z = x+ iy : πm < x < πk, y > 0}

by removing vertical intervals {πj + it : 0 ≤ t ≤ h′j}, m < j < k, where
h′j ≥ 0, see Fig. 1 (right).

Fig. 1. Comb regions of V (left) and MO (right) types.

Let θ be a conformal map from the upper half-plane H to D, such that
θ(∞) = ∞, θ(a1) = πm, θ(a2) = πk. Then z 7→ cos θ(z) is an analytic
function in the upper half-plane, which is real on the real line. So it extends
to an entire function, and the behavior at ∞ shows that this entire function
is a polynomial of degree n. Choose L so that the polynomial P = L cos θ is
monic. It is easy to check that our extremal polynomials satisfying (i)–(iii)
are of this form, with an appropriate choice of parameters h′j ≥ 0.

The set E is contained in E ′ := θ−1([πm, πk]). This set E ′ is the maximal
extension of E, for which the extremal polynomial is the same as the one for
E. Critical points of Pn are preimages of the tips of the slits under θ, and
critical values are ± coshh′j. The θ-preimages of the points πj, m < j < k
are solutions of Pn(z) = ±L, and all these solutions are real.

For example, if E = [−1, 1] we take all h′j = 0, and Pn is the n-th
Chebyshev polynomial. If E consists of two intervals symmetric with respect
to 0, and n is even, we take all hk = 0, except one, h′(m+k)/2 > 0.

2



On polynomials of least deviation from 0 on several intervals we refer to
[2, 3], [4, vol. 1] and the survey [47], where the representation Pn = L cos θ
is used systematically.

2. Spectra of periodic Jacobi matrices. Consider a doubly infinite, peri-
odic Jacobi matrix

J =











. . . . . . . . . . . . . . . . . .
p−1 q−1 p0 0 0 0
0 p0 q0 p1 0 0
0 0 p1 q1 p2 0
0 0 0 p2 q2 p3

. . . . . . . . . . . . . . . . . .











which is constructed of two periodic sequences of period n, where qj are real,
and pj > 0. This matrix defines a bounded self-adjoint operator on ℓ2, and
we wish to describe its spectrum [18, 33, 45].

To do this we consider a generalized eigenvector u ∈ ℓ∞ which satisfies

Ju = zu, z ∈ C.

For fixed z, this can be rewritten as a recurrent relation on the coordinates
of u:

pj+1uj + (qj+1 − z)uj+1 + pj+2uj+2 = 0,

which we rewrite in the matrix form as
(

uj+1

pj+2uj+2

)

=

(
0 1/pj+1

−pj+1 (z − qj+1)/pj+1

) (
uj

pj+1uj+1

)

.

Thus (
un

pn+1un+1

)

= Tn(z)

(
u0

p1u1

)

,

where Tn(z) is a polynomial matrix with determinant 1, which is called the
transfer-matrix. To have a bounded generalized eigenvector u, both eigen-
values of Tn must have absolute value 1. This happens if and only if

|Pn(z)| := | trTn(z)|/2 ≤ 1.

As Pn is a real polynomial, the spectrum is the preimage of the interval
[−1, 1]. As our matrix J is symmetric, the spectrum must be real, this is the
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same as the condition that all solution of the equations Pn(z) = ±1 are real,
so we obtain a polynomial of the same kind as in Example 1. For every real
polynomial with this property, there exists a periodic Jacobi matrix whose
spectrum is P−1

n ([−1, 1]), and all matrices J with a given spectrum can be
explicitly described [34, 45]. Our polynomial has a representation Pn = cos θ,
where θ is a conformal map of the upper half-plane onto a comb region D as
in Example 1. We obtain the result that the spectrum of a periodic Jacobi
matrix consists of the intervals – preimage of the real line under a conformal
map θ.

We can prescribe an arbitrary sequence h′j, 1 ≤ j ≤ n − 1, construct a
conformal map θ : H → D, where D is the region shown in Fig. 1 (right),
and the polynomial P = cos θ will have critical values (−1)j coshh′j and all
solutions of P (z) = ±1 will be real. Such polynomial P is defined by its
critical values of alternating sign up to a change of the independent variable
z 7→ az + b, a > 0, b ∈ R. Later we will show that any real polynomial with
arbitrary real critical points is defined by its critical values up to a change of
the independent variable z 7→ az + b, a > 0, b ∈ R.

We conclude this introduction with several historical remarks. After
the works of Sergei Bernstein, in the 1950s and 1960s the development of
the Chebyshev approximation was clearly dominated by the study of entire
functions of least deviation from zero, see, for example [1, p. 320-363]. In
particular, Boas and Schaeffer [9] (see also [36]) proved under very general
assumptions that the extremal function can be expressed in terms of the
hyperelliptic integral

f(z) = L sin

{
∫

p(z)
√

q(z)
dz

}

.

The new wave of interest in the comb polynomials is most likely related to
the theory of integrable systems, see e.g. [7], and the application of the iter-
ation theory to the spectral theory of almost periodic operators with Cantor
type spectrum, see e.g. [20]. Franz Peherstorfer explicitly formulated both
properties of the comb polynomials (as polynomials of the least deviation
from zero and in connection with periodic Jacobi matrices) in [40], see also
[41, 42, 47].

An attractive aspect of this circle of questions is the numerous connec-
tions with diverse classical problems in analysis: investigations of Abel on
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expressing elliptic and hyperelliptic integrals in elementary functions; con-
tinued fractions and Pell’s equations; factorization of functions on Riemann
surfaces; subharmonic majorants; and so on. For modern surveys of these
questions we refer to [47, 31]. For other applications of comb functions we
mention [10, 11].

In parallel with our paper Injo Hur and Christian Remling presented
a special paper [21] on applications of comb functions in spectral theory of
ergodic Jacobi matrices and we refer the reader to it in particular, for further
references related to this important direction.

2 Comb representation of LP entire functions

In both examples in the Introduction, the class of real polynomials P such
that all solutions of P (z) = ±1 are real appears. Evidently, all zeros of such
polynomials must be real and simple. Here we discuss a representation of
polynomials with real zeros, not necessarily simple, using conformal map-
pings and generalization of this representation to a class of entire functions.

Let P be a non-constant real polynomial of degree n with all zeros real.
Let ϕ = logP be a branch of the logarithm in the upper half-plane H. Then

−ϕ′ = −P
′

P
= −

n∑

n=j

1

z − zj

is an analytic function in H with positive imaginary part.

Lemma 1. An analytic function ψ in H whose derivative has positive imag-
inary part is univalent.

Proof. Suppose that ψ(z1) = ψ(z2), zj ∈ H, z1 6= z2. Then

0 =
ψ(z1) − ψ(z2)

z1 − z2
=

∫ 1

0

ψ′(z2 + t(z1 − z2))dt,

but the last integral has positive imaginary part and thus cannot be 0.

It is easy to describe the image ϕ(H). By Rolle’s theorem, all zeros of P ′

are real and we arrange them in a sequence x1 ≤ . . . ≤ xn−1 where each zero is
repeated according to its multiplicity. Let cj = P (xj) be the critical sequence
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of P . Then the region D = ϕ(H) is obtained from a strip by removing n− 1
rays:

D = {x+ iy : πm < y < πk}\
⋃

m<j<k

{x+ iπj : −∞ < x ≤ hj}. (1)

Here m− k = n, and hj = log |ck−j| ≥ −∞. Thus

P = expϕ, (2)

where ϕ is a conformal map of the upper half-plane onto a region D we just
described (see Fig. 1, left). Such regions will be called polynomial V -combs.
Letter V in this notation is used because this representation was introduced
by E. B. Vinberg in [49].

Now suppose that an arbitrary finite sequence hj ∈ [−∞,∞), m < j <
k is given. Consider a V -comb D corresponding to this sequence, and a
conformal map ϕ : H → D. Using the same argument with reflection as in
Example 1 in the Introduction, it is easy to see that expϕ is a real polynomial
of degree n with critical values (−1)jehj .

We obtain

Theorem 1. For every finite sequence c1, . . . , cn−1 with the property

cj+1cj ≤ 0, (3)

there exists a real polynomial with real zeros for which this sequence is the
critical sequence. Such polynomial is defined by its critical sequence up to a
real affine change z 7→ az + b, a > 0 of the independent variable.

Now we extend this result to entire functions. Recall that an entire func-
tion belongs to the class LP (Laguerre-Pólya) if it is a limit of real polyno-
mials with all zeros real. For more information on the LP -class and its appli-
cations we refer to [25]. Consider the following class of regions. Begin with
{x+ iy : πm < y < πk}, where m, k are integers or ±∞, −∞ ≤ m < k ≤ ∞
and remove from this region the rays of the form

{x+ iπj : x ≤ hj}, m < j < k, (4)

where hj ∈ [−∞,∞). A region of this form is called a V -comb corresponding
to a sequence (hj), hj ∈ [−∞,∞). The sequence can be finite, or infinite in
one direction, or infinite in both directions.
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Theorem 2. The following statements are equivalent:

(i) f ∈ LP ,

(ii) f = expϕ, where ϕ : H → D is a conformal map onto a V -comb,

(iii) f(z) = zqe−az2+bz
∏∞

j=1(1 − z/zj)e
z/zj , where zj, a, b ∈ R;

∑

j

|zj |−2 <∞,

a ≥ 0 and q ≥ 0 is an integer.

It follows that there exists a function f ∈ LP with a prescribed sequence
of critical values cj satisfying (3), and prescribed limits limx→±∞ f(x) ∈
{0,∞} (asymptotic values). Such function is defined by its critical sequence
and asymptotic values up to an increasing real affine change of the indepen-
dent variable.

Here are some examples of comb representations (ii).

• f(z) = z+ b, b ∈ R. There are no critical values, asymptotic values are
±∞. D is a strip {0 < | Im z| < π}.

• f(z) = cos z. The critical sequence is (−1)j, infinite in both directions,
there are no asymptotic values. D is the plane, cut along the rays
{x+ iπj : −∞ < x ≤ 0}.

• f(z) = exp(−z2). D is the plane cut along the negative ray.

• f(z) = 1/Γ(z). D is the plane cut along the rays {x+ iπj : −∞ < x ≤
log |cj|}, j < 0, where cj are the critical values of the Γ-function, there
is an asymptotic value 0 = limx→+∞ 1/Γ(x).

• f a polynomial of degree n. D is obtained from the strip {x+ iy : 0 <
y < πn} by removing the rays (4), where hj = log |cj|, and cj are the
critical values of f .

An important subclass of LP is defined by the condition that hj ≥ 0,
m < j < k, and whenever the sequence of critical points is bounded from
below (or above, or from both sides), then the corresponding asymptotic
value is ∞. This subclass of LP will be called the MO-class. It was used for
the first time in spectral theory in [35]. Functions of MO-class have another
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representation in terms of conformal mappings. Consider a region D of the
form

{x+ iy : y > 0, πm < x < πk}\
k−1⋃

j=m+1

{πk + iy : 0 ≤ y ≤ h′j}, (5)

where −∞ ≤ m < k ≤ ∞, and h′j ≥ 0, see Fig. 1 (right). Such regions will
be called MO-combs. Let θ : H → D be a conformal map θ(∞) = ∞. Then

f = cos θ (6)

is a function of the classMO with critical values (−1)j coshh′j. Every function
of MO class can be represented in this way, and the function is defined by
its critical sequence up to a real affine change of the independent variable.
We have the following important characterization of the MO class [35]:

Theorem 3. For a real entire function f , the equation f2(z) − 1 has only
real roots if and only if f ∈MO.

Such functions occur in the situation similar to the Examples 2 and 1
in the Introduction: they describe the spectra of periodic canonical systems
[23, 12] and entire functions of smallest deviation from zero on closed subsets
of the real axis [47].

3 MacLane’s theorem

In this section we give a geometric characterization of integrals of LP func-
tions. Roughly speaking, we will show that critical values of these integrals
can be arbitrarily prescribed, subject to the evident restriction (7). Notice
that differentiation maps LP into itself, so the class of integrals of LP -
functions contains LP .

We follow the exposition in [49] with some corrections and simplifications,
see also [14] on related questions. Let f be a real entire function with all
critical points real.

Consider the preimage f−1(R). It contains the real line, and it is a smooth
curve in a neighborhood of any point which is not a critical point At a critical
point of order n it looks like the preimage of the real line under zn+1.

MacLane’s class consists of real entire functions for which the preimage
of the real line looks like one of the pictures in Fig. 2,
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Fig. 2. Fish-bones.

up to an orientation preserving homeomorphism of the plane, commuting
with the complex conjugation. We call this picture a fish-bone.

There are several cases. In the simplest case, the sequence of critical
points . . . ≤ xj ≤ xj+1 ≤ . . . is unbounded from below and from above.
Each critical point is repeated in this sequence according to its multiplicity.
Preimage of the real line consists of the real line itself, crossed by infinitely
many simple curves, each curve is symmetric with respect to the real line.
The crossing points are mapped onto the critical values cj = f(xj). Several
“vertical” lines cross the real line at a multiple critical point. The comple-
ment to the union of curves in Fig. 2, consists of simply connected regions,
each of them is mapped conformally onto the upper or lower half-plane.

The sequence of critical points can be bounded from above or from below
or both. Suppose that it is bounded from below, and enumerate the sequence
as x1 ≤ x2 ≤ . . .. Then the left end of the fish-bone can be of two types.
For the first type, shown in Fig 2 (left), the full preimage of the real line
is connected. We have two large complementary regions adjacent along a
negative ray, each of them is mapped by f homeomorphically onto the upper
or lower half-plane. It is easy to see that in this case we have f(x) → ∞ as
x → −∞. We set c0 = ∞ and extend our critical sequence (cj) by adding
this term to it.

The second type of the end is shown in Fig. 2 (right). In this case,
the preimage of the real has infinitely many components. In addition to
one component of f−1(R), as above, there are infinitely many simple curves
tending to infinity at both ends. Strip-like regions between these curves are
mapped homeomorphically onto the upper or lower half-plane. In this case
c0 = limx→−∞ f(x) 6= ∞, and we extend our critical sequence by c0.
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Similar situations may occur on the right end when the sequence of critical
points is bounded from above.

In all cases, the fish-bone is completely determined by the augmented
critical sequence (cj). We use the following notation: if the sequence of
critical points is unbounded from above and below, then −∞ < j < +∞. In
all other cases, the critical values are cj; m < j < k, where −∞ ≤ m < k ≤
+∞, and if m or k or both are finite, we add to our sequence the term cm or
ck or both, which are the limits of f(x) as x→ −∞ or x→ +∞.

The augmented critical sequence satisfies the following condition

(cj+1 − cj)(cj − cj−1) ≤ 0. (7)

All cj are real, except possibly the first and/or the last term which can be
±∞.

We call such sequences “up-down sequences”. If the sequence of critical
points is unbounded from below and from above, then the sequences xj and
cj are defined for a given f up to a shift of the subscript.

MacLane’s theorem [30] For every up-down sequence, finite or infinite
in one or both directions, there exists a function f ∈ M for which this se-
quence is the critical sequence. Any two functions corresponding to the same
sequence are related by f1(z) = f2(az + b) with a > 0, b ∈ R.

In other words, one can prescribe a piecewise-monotone graph on the real
line, and after a strictly increasing continuous change of the independent
variable, this will be the graph of an entire function of MacLane’s class,
which is essentially unique.

Uniqueness statement in MacLane’s theorem is easy. Suppose that f1

and f2 are two functions of MacLane class with the same augmented critical
sequence. Then it is easy to construct a homeomorphism φ of the plane such
that f1 = f1 ◦ φ. Then φ must be conformal and commute with complex
conjugation, so φ must be a real affine map.

Class LP is contained in the MacLane class. It corresponds to the case
when the critical sequence satisfies the condition (3) and in addition, the first
and last terms of the sequence cj, if present, are 0 or ∞. It is clear that (3)
is stronger than (7).

We proved this special case of MacLane’s theorem in the previous section.
Now we give the proof of MacLane’s theorem in full generality.

First we recover the fish-bone from the given sequence (cj) as explained
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above. Then we construct a continuous map F : Cz → Cw as follows. We
map each interval [xj, xj+1] ∈ R linearly onto the interval [cj, cj+1]. Then we
map each infinite ray of the fish-bone onto a corresponding ray of the real
line, linearly with respect to length. The curves on the left of Fig. 2 (right)
are mapped on the rays [c0,∞). Then we extend our map to the components
of the complement of the fish-bone, so that each component is mapped on
the upper or lower half-plane homeomorphically.

The resulting continuous map F is a local homeomorphism everywhere
except the points xj where it is ramified. There is unique conformal structure
ρ in the plane Cz which makes this map holomorphic. By the uniformiza-
tion theorem, the simply connected Riemann surface (C, ρ) is conformally
equivalent to a disc |z| < R, where R ≤ ∞. This means that there exists
a homeomorphism φ : {z : |z| < R} → C such that F ◦ φ is a holomor-
phic function. As all our construction can be performed symmetrically with
respect to the real line, F is a real function. It remains to prove that R = ∞.

If the sequence (xj) is finite, and both asymptotic values are ∞, our map
extends to a continuous map of the Riemann sphere Cz → Cw by putting
F (∞) = ∞. So the Riemann surface (C, ρ) must be conformally equivalent
to the sphere, and we obtain that R = ∞. In this case f = F ◦φ is evidently
a polynomial.

If the sequence (xj) is infinite in both directions, we consider truncated se-
quences (cj)

n
j=−n, augmented by asymptotic values ∞ on both sides, and the

corresponding fish-bones and maps Fn as above. By the previous argument
we have homeomorphisms φn and polynomials fn = Fn ◦ φn.

We can always arrange that x1 < x2, 0 ∈ (x1, x2), and Fn(0) = a ∈
(c1, c2), where a is independent of n. Then we choose φn so that φn(0) = 0,
and

f ′
n(0) = 1. (8)

Then fn maps univalently some disc {z : |z| < r} onto a region Gn which
contains a disc {w : |w| < ǫ} and is contained in a disc {w : |w| < δ} with
some r > 0, ǫ > 0, δ > 0 which are independent of n. This follows from the
Schwarz lemma applied to fn and f−1

n in a neighborhood of 0. We conclude
that (fn) is a normal family in {z : |z| < r} and the limit functions are
non-constant.

Now we use the following lemma [25].

Lemma 2. Let gn be a sequence of real polynomials whose all zeros are real,
and suppose that gn → g 6≡ 0 uniformly in some neighborhood of 0. Then g
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is entire, and gn → g uniformly on compact subsets of C.

Proof. By a shift of the independent variable we may assume that g(0) 6=
0. Then gn(0) 6= 0 for large n. We have

−
(
g′n
gn

)′

(0) =
∑

k

1

z2
n,k

,

where zn,k are zeros of gn. The left hand side is bounded by a constant
independent of n, while all summands in the right hand side are positive. So
for every interval I on the real line there exists a constant c(I) independent
of n such that the gn have at most c(I) roots on I. Thus from every sequence
of gn one can choose a subsequence such that the zero-sets of polynomials
of this subsequence tend to a limit set which has no accumulation points in
C. So our subsequence converges to an entire function. Evidently this entire
function is an analytic continuation of g, and the statement of the lemma
follows.

We apply this lemma to the sequence (f ′
n) and conclude that f is entire,

that is R = ∞, as advertised.

Now we describe the necessary modifications of this proof for the case that
the sequence of critical points is bounded from below (the case of semi-infinite
sequence bounded from above is treated similarly). If the asymptotic value
c0 = ∞, no modification is needed. If c0 6= ∞, we may assume without loss
of generality that c0 = 0, by adding a real constant to all functions f, F, fn.
Then we approximate our critical sequence c0, c1 . . . by the finite sequences
c0, c0, . . . , c0, c1 . . . , cn, where c0 = 0 is repeated n times. The corresponding
fish-bone is shown in Fig. 3, where β is the additional zero of multiplicity n.
As n→ ∞, β → −∞. The rest of the argument goes without change.
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Fig. 3. Approximation of a fish-bone by polynomial ones.

Finally we consider the case when there are finitely many critical points and
two different asymptotic values. In this case, no approximation argument is
needed, and f(z) =

∫ z

−∞
P (ζ) exp(−aζ2+bζ)dζ, where P is a real polynomial

with all zeros real and a ≥ 0 and b ∈ R.

4 Representation of Green’s and Martin’s

functions

Here we discuss the relation between comb regions and Green and Martin
functions of complements of closed sets on the real line.

Let E ⊂ R be a compact set of positive capacity. Then there exists the
Green function G of Ω = C\E with pole at ∞. We have

G(z) =

∫

E

log |z − t|dµ(t) + γ(E), (9)

where µ is a probability measure on E which is called the equilibrium mea-
sure, and γ the Robin constant of E. Function G is positive and harmonic
in C\E, and has boundary values 0 a. e. with respect to µ. We have

G(z) = log |z| + γ + o(1), z → ∞. (10)

These properties characterize G and µ [24].
There exists an analytic function φ : H → H, such that G = Imφ. It is

called the complex Green function. Since the derivative

φ′ =
d

dz

(

i

∫

E

log(z − t)dµ(t)

)

= i

∫

E

dµ(t)

z − t

has positive real part in H, we conclude from Lemma 1 that φ is univalent.
Let D = φ(H). This region D has the following characteristic properties:

(i) D is contained in a vertical half-strip {x + iy : a < x < b, y > 0} with
b− a = π, and contains a half-strip {x+ iy : a < x < b, y > K} with some
K > 0.

(ii) For every z ∈ D, the vertical ray ℓz = {z+ it : t ≥ 0} is contained in D.
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(iii) For almost every x ∈ (a, b), the ray {x+ iy : y > 0} is contained in D.

These properties can be restated shortly as follows:

D = {x+ iy : a < x < b, y > h(x)}, (11)

where h is as non-negative upper semi-continuous function bounded from
above and equal to 0 a. e.

We sketch a proof of (i)–(iii). Function G given by (9) is upper semi-
continuous, so it must be continuous at every point where G(z) = 0. If
h(x) = 0 for some x ∈ (a, b), then for the similar reason, h is continuous at
x, so ∂D is locally connected at x. It follows that x = φ(x′) for some x′ ∈ R,
and φ is continuous at x′. In other words, existence of a radial limit φ(x′),
such that Imφ(x′) = 0 implies continuity of φ and G at the point x′

Reφ(z) = −
∫

E

arg(z − t)dµ(t) = y

∫

E

µ(t)dt

(x− t)2 + y2
, (12)

where z = x + iy and µ(t) = µ((−∞, t]) is the distribution function. As
µ has no atoms, t 7→ µ(t) is continuous. So Reφ is continuous in H. The
first statement of (i) follows because 0 ≤ µ(t) ≤ 1, and the second because
G(z) = Imφ is bounded on any compact set in C.

To prove (ii), let α be a tangent vector to the ray ℓz, so α = i. Then
β = (φ−1)′α will be the tangent vector to the φ-preimage of this ray, and we
have seen that arg(φ−1)′ ∈ (−π/2, π/2). So β is in the upper half-plane thus
the preimage of ℓz can never hit the real line, and an analytic continuation
of φ−1 is possible along the whole ray ℓz.

To prove (iii), we use (12) again. As µ(t) is continuous, Reφ is continuous
in H. Moreover,

Reφ(β) − Reφ(α) = µ(β) − µ(α), α < β.

This means that measure µ on E corresponds to the Lebesgue measure on
base of the comb (a, b). Furthermore, if for some x ∈ E we have G(x) = 0
then h(Reφ(x)) = 0. Thus h = 0 almost everywhere with respect to the
Lebesgue measure on (a, b). This proves (iii),

Now we show that for every D satisfying (i)–(iii), the conformal map
φ : H → D is related with the Green function G of some closed set E by the
formula G = Imφ.
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Imaginary part v = Imφ is a positive harmonic function in the upper
half-plane. We extend it to the lower half-plane by symmetry, v(z) = v(z),
and to the real line by upper semicontinuity: v(x) = lim supz→x v(z). In
view of (i), ∂D has a rectilinear part near infinity, the extended function v
is harmonic in a punctured neighborhood of ∞ and has asymptotics of the
form

v(z) = log |z| + const + o(1), z → ∞.

Let us prove that v is subharmonic in the whole plane, and has a representa-
tion (9) with some probability measure µ with compact support on the real
line.

Let {hk} be a dense set on ∂D. Let Dn be the region obtained from the
half-strip {x + iy : a < x < b, y > 0} by removing the vertical segments
{Rehk+iy, 0 < y ≤ Imhk}. ThenD1 ⊃ D2 ⊃ . . .→ D. Let φn be conformal
maps of H onto Dn, normalized by φn(0) = a, φn(1) = b, φn(∞) = ∞. Then
it is easy to check that Imφn is the Green function of some set En ⊂ [0, 1]
consisting of finitely many closed intervals. So

Imφn(z) =

∫

log |z − t|dµn(t) + γn,

with some probability measures µn on [0, 1] and some constants γn. We can
choose a subsequence such that µn → µ weakly, where µ is a probability
measure on [0, 1], and it is easy to check that (9) holds with some γ. Thus
v is subharmonic in the plane. Since v ≥ 0, the measure µ has no atoms. It
remains to prove that v(x) = 0 a. e. with respect to µ. This follows from the
property (iii) of the region D. Indeed, let x ∈ (a, b) be a point such that the
vertical ray ℓx is in D, except the endpoint x. By a well-known argument,
the curve φ(ℓx) has an endpoint at some x′ ∈ (0, 1), and the angular limit
of v = Imφ is zero at this point x′. By the remark above, v(x′) = 0. We
define E as the closed support of µ. Then v = Imφ is positive and harmonic
outside E and v(x) = 0 µ-almost everywhere, so v is the Green function of E.

Our construction of D from E defines D up to a shift by a real number.
The inverse construction defines E up to a real affine transformation, and
changing E by a set of zero capacity.

Now we give a similar representation of Martin functions. Let E ⊂ R be
an unbounded closed set of positive capacity. Let U be the cone of positive
harmonic functions in C\E, and Us ⊂ U the cone of symmetric positive
harmonic functions, v(z) = v(z). Martin’s functions are minimal elements of

15



U , that is functions v ∈ U with the property

u ∈ U, u ≤ v implies u = cv,

where c > 0 is a constant. Similarly we define symmetric Martin functions
using Us instead of U . Martin functions always exist and form a convex cone.
If v is a Martin function, then u(z) + u(z) is a symmetric Martin function,
so symmetric Martin functions also exist and form a convex cone.

Let v be a symmetric Martin function, and let φ be an analytic function in
H so that v(z) = Imφ(z), z ∈ H. Then φ : H → D is a conformal map onto
a region D ⊂ H. This is proved in the same way as for Green’s functions.
Regions D arising from symmetric Martin functions are characterized by
the properties (ii), (iii) above and the negation of the property (i): either
a = −∞ or b = +∞, or h is unbounded in (11). Levin introduced the
following classification of regions D:

Class A: a = −∞ and b = ∞.
Class B: one of the numbers a, b is finite, another infinite.
Class C: both a and b are finite.
Kesarev [19] gave a geometric criterion in terms of the set E which dis-

tinguish the cases A,B and C.
Notice that function φ maps h into H, so the angular derivative of φ at

infinity exists, that is

φ(z) = cz + o(z), z → ∞ in any Stolz angle,

where c ≥ 0. One can derive from this that every Martin function satisfies

B(r, v) := max
|z|=r

v(z) = O(r), r → ∞.

This implies that the cone of Martin functions has dimension at most 2,
[22, 29, 12], and the cone of symmetric Martin functions is always one-
dimensional.

Dimension of the cone of Martin’s functions is an important characteristic
of the set E, see [8, 29]. One can show that the cone of Martin functions is
two-dimensional if and only if

lim sup
r→∞

B(r, v)/r > 0.

A geometric criterion which tells in terms of the set E the dimension of the
cone of Martin’s functions is given by Andrievskii [6].
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Now we impose various conditions on E and find their exact counterparts
in terms of E and µ.

The first important condition is that the set E is regular in the sense of
potential theory [24]. In this case Green’s and Martin’s functions are con-
tinuous in C. For the region D this is equivalent to the local connectedness
of ∂D in the case of Green’s function, and local connectedness of the part
∂D\X, where X is the union of the vertical rays on ∂D, if these rays are
present. In terms of function h in (11), local connectedness is equivalent in
the case of Green’s function to the condition that the set X = {x : h(x) > 0}
is at most countable, and the sets Xǫ = {x : h(x) > ǫ} are finite for every
ǫ > 0, that is D is obtained from H by making countably many cuts, and
the length of a cut tends to 0.

In the case of Martin’s function, local connectedness of D means that the
sets Xǫ can only accumulate to a or b.

Next we discuss the condition on D which corresponds to absolute con-
tinuity of µ. We thank Misha Sodin who passed to us the contents of his
conversation with Ch. Pommerenke on this subject.

To state the result we first recall McMillan’s sector theorem [32], [43,
Thm. 6.24]. Let f be a conformal map from H to a region G. Let sect(f)
be the set of points x ∈ R such that the non tangential limit f(x) exists and
f(x) is the vertex of an angular sector in G.

McMillan Sector Theorem [43, Theorem 6.24, p.146]. Assume that A ⊂
sect(f). Then

|A| = 0 if and only if |f(A)| = 0. (13)

We say that the sector condition holds in the comb regionD if the function

H(x) = sup
y∈(a,b)

h(y)

|y − x| (14)

is finite for almost all x ∈ (a, b). Geometrically it means that for almost all
x in the base of the comb there exists a Stolz angle with the vertex in x.

Theorem 4. Region D satisfies the sector condition if and only if µ is ab-
solutely continuous with respect to the Lebesgue measure on R.

Proof. Recall that the Lebesgue measure on the base of the comb corre-
sponds to the harmonic measure µ on E.
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Assume that the sector condition holds. This means that a Borel support
of the harmonic measure µ is contained in sect(φ). LetA be a Borel support of
the singular component of µ. By the definition |A| = 0. Thus, by McMillan’s
theorem µ(A) = 0, thus µ is absolutely continuous.

Conversely, assume that the harmonic measure is absolutely continu-
ous. Recall that φ′ has positive imaginary part, and therefore possesses
non-tangential limits for almost all x with respect to the Lebesgue measure.
Therefore the limit exists for almost all x with respect to the harmonic mea-
sure as well.

Example 1. There exist irregular regions with absolutely continuous measures
µ. Indeed, let C be the standard Cantor set in [a, b]. Let h(x) be the
characteristic function of C. Then the region generated by this comb is
irregular, on other hand H(x) is finite for all x ∈ [a, b] \ C.

Example 2. We give an example of a comb such that the conditions of the
previous theorem do not hold, moreover H(x) = ∞ for almost all x ∈ [a, b].
This comb is related to the Julia set of a polynomial T (z) = z2 − λ [46]. For
λ > 2 there exists h0 > 0 such that the Julia set of T is the preimage of the
base of the comb given in Fig. 4.

Fig. 4. Comb related to the Julia set of T (z) = z2 − λ.

Recall that almost every number x contains arbitrarily long strings of zeros in
its dyadic representation, that is, for almost every x, and every non-negative
integer N , there exists a string ym of 0’s and 1’s, ending with 1, such that

x = (ym,

N
︷ ︸︸ ︷

0, ..., 0, ....). Then h(ym) = 2−mh0, and |x − ym| = 2−(m+N). That
is H(x) ≥ 2Nh0. In fact the Lebesgue measure of the Julia set is 0, i.e. the
harmonic measure is singular continuous. Note that since the boundary is
locally connected the region C \ E is regular.
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Even stronger condition is that

∑

x

h(x) <∞, (15)

in other words, the total length of slits is finite. This is the so-called Widom
condition. It appears in his studies of asymptotics for extremal polynomials
associated with a system of curves in the complex plane. Let π1(Ω) be the
fundamental group of the given region Ω = C \ E. To a fixed character
α ∈ π∗

1(Ω) one associates the set of multi-valued (character-automorphic)
analytic functions

H∞(α) = {f : f ◦ γ = α(γ)f, ∀γ ∈ π1(Ω), sup
z∈Ω

|f(z)| <∞}.

The region Ω is of Widom type if the space H∞(α) is non-trivial (contains
a non-constant function) for every α ∈ π∗

1(Ω). A regular region Ω = C \ E
is of Widom type if and only if (15) holds. For the role of this condition in
the spectral theory of almost periodic Jacobi matrices see [48]. A well-known
fact that the derivative of a conformal mapping on a region bounded by a
rectifiable curve belongs to H1 implies that the corresponding equilibrium
measure µ is absolutely continuous.

5 More general combs

In this section we consider more general comb regions: those which satisfy
property (ii) of the previous section. These regions D can be described as

D = {x+ iy : a < x < b, y > h(x)}, (16)

where −∞ ≤ a < b ≤ ∞ and h is an upper semi-continuous function on
(a, b). Let Combs be the set of such regions modulo horizontal shift, or
equivalently, the set of all triples (a, b, h) modulo the equivalence relation
(a, b, h) ∼ (a+ c, b+ c, h(x− c)), c ∈ R.

Let Conf be the set of univalent functions in H such that φ(H) ∈ Combs,
normalized by φ(∞) = ∞, modulo the equivalence relation φ(z) ∼ φ(z −
c), c ∈ R.

Let R be the set of all analytic functions with positive real part in H.
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Let Sub be the set of all subharmonic functions v in the plane of the form

v(z) = Re

(

−az2 + bz +

∫

R

(

log
(

1 − z

t

)

+
zt

1 + t2

)

dµ(t)

)

,

where a > 0, b ∈ R and µ is an increasing right-continuous function, such
that ∫ ∞

0

µ(t) − µ(−t)
1 + t2

dt <∞.

Two such functions are considered equivalent if their difference is constant.

Theorem 5. There are the following canonical bijections between the sets
Conf, R, Sub:

φ 7→ φ′ : Conf → R, φ 7→ Imφ : Conf → Sub.

Moreover, Reφ = µ+ const, (2π)−1∆v = dµ.

6 Uniform approximation and extremal

problems

Here we consider several extremal problems whose solutions are expressed in
terms of comb functions.

Applications of comb functions to extremal problems begins with the work
of Akhiezer and Levin [5] on extension of Bernstein’s inequality. Further
applications are contained in [26, 27, 28, 29]. A survey of polynomials and
entire functions of least deviation from zero on closed sets on the real line is
given in [47].

Here we mention only few results.

1. Let f be an entire function of exponential type 1 satisfying |f(x)| ≤
1, x < 0 and |f(x)| ≤ B, x > 0, where B ≥ 1. One looks for maximal values
of |f(x)| for given x and of |f ′(0)|, [13]. The extremal function is expressed
in terms of the MO-comb with h′j = 0, j < 0 and h′j = cosh−1B, j ≥ 0. Let
θ : H → D be the conformal map onto the region (5), such that θ(z) ∼ z, as
z → ∞ non-tangentially, θ(0) = 0−. Set x1 = θ−1(ih0). Then the function

f0(x) =







B, x > x1,
cos θ(x), 0 ≤ x ≤ x1,
1, x < 0
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gives the solution of the first extremal problem: |f(x)| ≤ f0(x) for f in the
class described above, and f ′

0(0) is the maximal value of |f ′(0)|.
2. Best uniform approximation of sgn(x) on two rays/intervals. The

simplest problem of this kind is to find the best uniform approximation of
sgn(x) on the set X = (−∞,−a] ∪ [a,∞) by entire functions of exponential
type at most 1. The extremal entire function belongs to the MacLane class
and its critical sequence is of the form

cj =

{
−1 + (−1)jL, j ≤ 0,
1 + (−1)jL, j > 0,

(17)

where L is the error of the best approximation. Unfortunately, MacLane’s
functions do not have simple representations in terms of conformal mappings
like (2) or (6), however in certain cases representation in terms of conformal
maps of the kind described in section 5 can be obtained [15, 17].

3. Let us consider a uniform counterpart of the classical orthogonal Jacobi
polynomials. Let α, β ≥ 0 and let Jn(x;α, β) = xn + . . . denote the monic
polynomial of least deviation from zero on [0, 1] with respect to the weight
function xα(1 − x)β.

Lemma 3. For non-negative α, β and an integer n

xα(1 − x)βJn(x) = Leφ,

where φ is the conformal map on the V -comb region

D = {z = x+ iy : −β < y

π
< α + n} \

n⋃

j=0

{z = x+ iy :
y

π
= j, x ≤ 0}.

Such polynomials turn out to be useful in the description of multidi-
mensional polynomials of least deviation from zero [37]. As an example we
formulate the following theorem. Note that in multidimensional situation an
extremal polynomial is not necessarily unique.

Theorem 6. [38] A best polynomial approximation P (z1, . . . , zd, z1, . . . .zd)
to the monomial zk1

1 . . . zkd

d z1
l1, k1 ≥ l1, by polynomials of the total degree

less than k1 + · · · + kd + l1 in the ball |z1|2 + · · · + |zd|2 ≤ 1 can be given in
the form

zk1

1 . . . zkdz1
l1 + P (z1, . . . , zd, z1, . . . .zd)

= zk1−ℓ1
1 zk2

2 . . . zkd

d Jl1

(

|z1|2;
k1 − l1

2
,
k2 + · · · + kd

2

)

.
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4. We finish this section with an extremal problem for entire functions of
exponential type which arises in harmonic analysis [16].

For a fixed σ > 0, consider the class Aσ of entire functions which can be
represented in the form

f(z) =
1

2π

∫

γ

F (ζ)e−iζzdζ,

where F is analytic in C\[−σ, σ], F (∞) = 0 and γ is a closed contour sur-
rounding once the segment [−σ, σ]. We are interested in the upper estimate
of the upper density of zeros of f ,

d(f) = lim sup
r→∞

n(r)

r
,

where n(r) is the number of zeros, counting multiplicity in the disc
{z : |z| ≤ r}.
Theorem 7. For a function f ∈ A, we have d(f) ≤ cσ, where c ≈ 1.508879
is the unique solution of the equation

log(
√
c2 + 1 + c) =

√
1 + c−2 on (0,+∞). (18)

This theorem is deduced from the solution of the following extremal
problem for comb regions. Among all univalent functions φ mapping H
onto regions of the form D = {x + iy : y > h(|x|)} with the properties
h(0) = 0, h(x) ≤ 0, φ(0) = 0, φ(iy) ∼ iy, y → +∞, find the function with the
largest Reφ(1).

The extremal region is described by

h0(x) =

{
−∞, 0 < x < πc/2,
0, otherwise.

It is interesting that the same constant c as in (18) appears in the solution of
another extremal problem [3, Appendix, 84] which has no apparent relation
to Theorem 7.

7 Spectral theory and harmonic analysis

1. We say that an unbounded closed set E is homogeneous if there exists
η > 0 such that for all x ∈ E and all δ > 0,

|(x− δ, x+ δ) ∩ E| ≥ ηδ.
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Theorem 8. [50] Let θ be a conformal map from the upper half-plane H

onto an MO-comb region D (Fig. 1, right). Assume that E = θ−1(R) is
homogeneous. Then E is the spectrum of a periodic canonical system, i.e.,
there exists an integrable on [0, 1] non-negative 2×2 matrix function H(t) of
period 1, H(t+ 1) = H(t), such that for an entire (transfer) matrix function
T (1, z) defined by the differential system

JṪ (t, z) = zH(t)T (t, z), T (0, z) = I, J =

[
0 1
−1 0

]

, (19)

the following relation holds

eiθ = ∆ −
√

∆2 − 1, ∆(z) := (1/2) trT (1, z). (20)

Moreover the parameter t in (19) corresponds to the “exponential type” of
the matrix T (t, z) with respect to the Martin function θ, that is,

t = lim
y→+∞

log ‖T (t, iy)‖
Im θ(iy)

. (21)

The whole collection of such matrices H(t) for the given E can be parametri-
zed by the characters of the fundamental group of the region Ω = C \ E.

The condition of homogeneity of E implies that Ω = C\E is of Widom
type, and thus the region DG, which corresponds to the Green function of
Ω, satisfies Widom’s condition (15). Moreover, the so called Direct Cauchy
Theorem holds in Ω. This fact plays a crucial role in the proof of Theo-
rem 8. A very interesting and natural question: is it possible to characterize
a Widom domain by means of geometric properties of the region D related
to the Martin function of Ω?

Example. A region D is defined by a system of slits forming a geometric
progression

hjk = κjk, κ > 0, h0 = ∞,

otherwise hj = 0. The corresponding set E is homogeneous.

2. Riesz bases. A sequence of vectors (en) in a Hilbert space H is called a
Riesz basis if it is complete and there exist positive constants c, C such that

c
∑

|an|2 ≤
∥
∥
∥

∑

anen

∥
∥
∥ ≤ C

∑

|an|2
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for every finite sequence (an). A long-standing problem is how to find out
whether for a given sequence of real exponents (λn) the sequence eiλnx is a
Riesz basis in L2(−π, π). A recent result of Günter Semmler gives a para-
metric description of such Riesz bases.

We say that a sequence (dn), dn ≥ 0 satisfies the discrete Muckenhoupt
condition if ∑

n∈I

dn

∑

n∈I

d−1
n ≤ C(card I)2,

for every interval I of integers, and some C > 0.

Theorem 9. [44] The sequence (eiλnx) is a Riesz basis in L2(−π, π) if and
only if it is the sequence of zeros of the entire function f = expφ of expo-
nential type, where φ is a conformal map onto a V -comb with tips of the cuts
hn, and exp(2hn) satisfies the discrete Muckenhoupt condition.

For a given sequence (hn) such that (exp(2hn)) satisfies the discrete Muck-
enhoupt condition, the conformal map φ can be always normalized so that
f = expφ is of exponential type.

This theorem parametrizes all Riesz bases consisting of functions eiλnx in
terms of sequences hk.

We thank Misha Sodin for many illuminating discussions on the subject
in the period 1980–2011.
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