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Complex numbers are expressions of the form z = x + iy where x, y are
real numbers, and i2 = −1 (by definition). Complex numbers can be added
by the rule

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),

so we can associate to a complex number a vector (x, y) in the plane R2 and
the addition rule is the same as for vectors. Similarly you can multiply com-
plex numbers by real numbers, and obtain a real vector space of dimension
2.

The real numbers x and y are called the real and imaginary parts of the
complex number z = x + iy; they are denoted by Re z = x and Im z = y.
Numbers of the form x + i · 0 are identified with real numbers x. Numbers
of the form iy = 0 + iy are called pure imaginary.

Multiplication of complex numbers is defined like multiplication of poly-
nomials of degree 1 in the variable i, but i2 is replaced everywhere by −1, so
higher powers of i never occur:

(x1 + iy1)(x2 + iy2) = (x1x2 − y2y2) + i(x1y2 + x2y1).

With these rules of addition and multiplication, complex numbers form a
field, that is a collection of objects with two operations on them (addition
and multiplication) which obey all usual rules (commutative, associative and
distributive laws, and division is possible on every complex number except
0 = 0 + i0.

To perform division, we write:

1

x+ iy
=

x− iy
(x− iy)(x+ iy)

=
x

x2 + y2
− i y

x2 + y2
.
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The RHS is an expression of the form a+ ib with real a, b, that is a complex
number. The only exception is x = y = 0.

For a complex number z = x + iy the number z = x − iy is called the
conjugate. Operation of conjugation respects addition and multiplication:

z1 + z2 = z1 + z2, z1z2 = z1z2.

This implies that whenever we have a correct formula with complex numbers,
conjugating all terms in this formula gives a correct formula.

The real and imaginary parts of z can be expressed in terms of conjugation
operation

Re z = (z + z)/2, and Im z = (z − z)/(2i). (1)

If z = x+ iy is a complex number then

zz = x2 + y2 ≥ 0

is a non-negative real number, so there exists a non-negative square root of
it which is called the absolute value and denoted by |z| =

√
zz. This is the

same as the length of a vector if complex numbers are interpreted as vectors
in R2. The absolute value of a product is the product of absolute values:
|z1z2| = |z1||z2|.

We have the following inequalities:

|Re z| ≤ |z|, |Im z| ≤ |z|, |z| ≤ |Re z|+ |Im z|. (2)

It follows that

|z1 + z2|2 = (z1 + z2)(z1 + z2)

= |z1|2 + |z2|2 + 2Re (z1z2) ≤ |z1|2 + |z2|2 + 2|z1||z2|
= (|z1|+ |z2|)2.

Taking square roots we obtain

|z1 + z2| ≤ |z1|+ |z2|.

This is called the triangle inequality. Replacing z2 7→ z2 − z1 we obtain
|z2 − z1| ≥ |z2| − |z1|, but z1 and z2 can be interchanged, so

|z1 − z2| ≥ ||z1| − |z2|| .
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The notion of absolute value allows us to define a distance between two
complex numbers as |z1− z2|, and the notion of distance permits to consider
limits. The definition of the limit is the same as for real numbers: we say
that lim zn = a if for every ε > 0 there exists a positive integer N such that
|zn − a| < ε for all n > N .

In view of the inequalities (2), lim zn = a if and only if lim Re z = Re a
and lim Im z = Im a. So convergence of a complex sequence is just equivalent
to the convergence of real and imaginary parts.

Now we consider functions and equations with complex variables. Since
the definition of a polynomial uses only addition and multiplication, it is the
same as for real numbers. So we can consider quadratic equations.

Example. Solve z2 = i. We write z = x+ iy, then

z2 = x2 − y2 + 2ixy.

This must be equal to i, so we obtain a system

x2 − y2 = 0, 2xy = 1.

Eliminating y from the second equation and substituting to the first, we
obtain x4 = 1/4, which has two (real) solutions y = ±1/

√
2, then x =

±1/
√

2, and the second equation shows that x and y must be of the same
sign. So we obtain two solutions z1,2 = ±(1 + i)/

√
2.

Similarly one can show that equation z2 = w has exactly two solutions
for every complex w 6= 0. When w = 0 there is one solution, z = 0.

Once we know how to solve this equation, we can solve any quadratic
equation by the quadratic formula, which is the same as in the algebra of
real numbers. Unlike in real algebra, every complex number has a square
root, so every quadratic equation has one or two complex solutions.

It is a remarkable fact that every polynomial equation has at least one
complex solution. This is called the Fundamental theorem of algebra.

If P is a non-zero polynomial, and P (z1) = 0, then P factors: P (z) =
(z − z1)Q(z), for some polynomial Q. This is obtained by the procedure of
“long division” (with remainder) of polynomials which is similar to division
of integers. When we multiply polynomials, their degrees are added, so
degP = degQ + 1. So from the fundamental theorem of algebra we obtain
that Every polynomial of degree d ≥ 1 factors into polynomials of degree 1:

P (z) = c(z − z1)(z − z2) . . . (z − zd),
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where c, z1, . . . , zd are complex numbers.
These numbers z1, . . . , zd are called the roots of the polynomial. They do

not have to be distinct. Grouping the same roots, we obtain another form of
factorization

P (z) = c(z − z1)m1(z − z2)m2 . . . (z − zk)mk

where m1 + . . . + mk = d = degP and this time z1, . . . , zk are distinct. The
numbers mj are called multiplicities of the roots zj.
Example. Consider a polynomial equation with real coefficients P (z) = 0. If
P (z1) = 0 then we can apply complex conjugation, and obtain P (z1) = 0. So
non-real roots must come in pairs of complex conjugate roots. As a result,
every real polynomial of degree at least 1 factors into real polynomials of
degrees 1 and 2.

Among other functions of complex variable, the most important is the
exponential function. It is defined as a sum of the infinite series

ez = 1 + z + z2/2 + z3/6 + . . . =
∞∑
0

zn

n!
.

So it is a limit of polynomials (truncated sums), and one can show that this
series in convergent for all complex values of z. Such functions (defined as
limits of polynomials which exist for all complex numbers) are called entire
functions.

The definition coincides with the Taylor series of the exponential func-
tion, so for real z our function coincides with the real exponential function.
Convergent power series can be differentiated term-by-term, using the differ-
entiation rule (d/dz)zn = nzn−1, and we obtain the first two main properties
of the exponential:

e0 = 1, and (d/dz)ez = ez.

The third main property is that the exponential function transforms addition
to multiplication:

ez1+z2 = ez1ez2 . (3)

To prove it, we use the binomial formula.

ez1+z2 =
∞∑
n=0

(z1 + z2)
n

n!
=
∞∑
n=0

1

n!

n∑
k=0

n!

k!(n− k)!
zk1z

n−k
2
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=
∞∑
n=0

∑
m+k=n

zk1
k!

zm2
m!

(we changed k to m = n− k)

=
∞∑
k=0

zk1
k!

∞∑
m=0

zm2
m!

= ez1ez2 .

Applying this to z = x+ iy we obtain ex+iy = exeiy. To understand what eiy

is, we take real and imaginary part. Notice that i2m is real and equals (−1)m,
while i2m+1 is pure imaginary and equals i(−1)m. So we have, separating even
and odd n in the series of the exponential:

eiy =
∞∑

m=0

(−1)m

(2m)!
y2m + i

∞∑
m=0

(−1)m

(2m+ 1)!
y2m+1.

You can recognize in the real and imaginary parts of eiy the Taylor series of
cos and sin. So we have the fundamental formula

ex+iy = ex(cos y + i sin y). (4)

Notice that eze−z = 1 for all z; this follows from (3). When y is real we also
have e−iy = eiy. Using (1) we obtain cos(y) = (eiy + e−iy)/2 and sin y =
(eiy − e−iy)/(2i). This suggests the definition for all complex z:

cos z =
eiz + e−iz

2
=

∞∑
m=0

(−1)m

(2m)!
z2m,

and

sin z =
eiz − e−iz

2i
=

∞∑
m=0

(−1)m

(2m+ 1)!
z2m+1,

so cos and sin are also entire functions. Notice that all trigonometric formu-
las can be easily derived from these definitions and the three fundamental
properties of the complex exponential. One also defines hyperbolic functions

cosh z =
ez + e−z

2
= cos(iz),

and

sinh z =
ez − e−z

2
= −i sin(iz).

This is the minimum information about complex numbers you need for this
course. More is contained in Appendix 2 of the book.

5


