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Here is another nice example of application of conformal maps taken from
[1, 2, 3].

The following phenomenon was discovered by the American physicist
Charles Edward Munroe (1880).

You put a cylindrical charge of high explosive (15 cm high, 4 cm diameter)
on top of a thick armor plate (20 cm thickness) and explode it. You get a little
dent (about 1 cm deep) in the plate. Now explode it at some height (6 cm)
over the plate. There will be almost no trace on the plate surface. Now drill
a conical cavity, opening downward, in the explosive charge from the bottom
side of it. The effect increases: you obtain a little pit few centimeters deep.
This is already a surprise: you used less explosive than in the first experiment
and you achieve a stronger effect. Now cover the surface of the conical cavity
by a thin (1.5 mm) layer of steel. You get a pit in the armor about 5 cm
deep. And finally explode the charge with the conical cavity covered by steel
at the height of 6 cm over the plate. This time you pierce the plate through!

The physical explanation is that the conical cavity in the explosive forms
a thin jet made of the steel covering the cavity, and this jet has so high kinetic
energy, because of its velocity, that it pierces a thick armor plate.

The effect is widely used since WWII in anti-tank weapons. The tanks
are covered by armor plates, several centimeters thick. Normally, to pierce
this armor by kinetic energy of a heavy shell you need very high velocity.
This is achieved by a heavy cannon, a very bulky and expensive thing.

(Most of the images found in Google under “anti-tank gun” show small
caliber guns and even rifles which were obsolete by the early 1940-s, as the
tank armor improved. To penetrate the armor of a modern tank (after 1943)
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one needs a big gun, of 100 mm and higher caliber.)
Using the Munroe effect you can pierce the same plate with a grenade

whose velocity is irrelevant: you can throw it by hand, or shoot from a
small portable rocket launcher. This sort of weapon was developed before
and during WWII. (US Bazooka, Soviet RPG (=Rocket Anti-tank Grenade
launcher), Soviet anti-tank hand grenade, and German Panzerfaust. You can
see many pictures in Wikipedia and movies on U-Tube).

In Russian literature, this jet of steel formed by explosion, which pierces
the armor, is called the “wire”. It is very thin indeed. You can see the
holes made by these shaped charges in the tanks on display in museums.
You can hardly stick a pencil into these holes, but they really penetrate the
whole thickness of an armor plate (and ignite everything which can burn
inside). So for example the picture http://en.wikipedia.org/wiki/File:Tali-
Ihantala.jpg is misleading: the tank in the background was destroyed by
another kind of weapon, definitely not by the Panzerfaust grenades that
soldiers in the foreground hold.

Actually it is relatively easy to protect a tank from these shaped charge
projectiles. One simply adds on the outside of the armor some thick but
light layer. This can be a thin sheet metal placed at some distance outside
the main armor. It will cause the projectile explode at a larger distance, so
that the jet does not reach the armor.

It is much more difficult, practically impossible, to protect against real
heavy high velocity cannon shells.

Wikipedia says that traditional large caliber, high velocity anti-tank guns
are used nowadays only by the Russians, and “some other countries”, which
means that all anti-tank weapons produced in the West is based on the
cumulative effect.

A mathematical theory of Munroe effect (which is called cumulative
effect in Russian) was developed by M.A Lavrentiev during the WW II.
This research was declassified in 1970-s and included in the 4-th edition of
Lavrentiev–Shabat textbook of complex analysis.

As I don’t know of any other place where this or similar theory is pub-
lished, I decided to write this account in English. The projectiles based on
the cumulative effect have no established name in English. They are known
under various names like HEAT (high explosive anti tank), APHE (armor-
piercing high explosive), hollow charges or shaped charges.

Mathematically this problem is modeled by collision of two jets of ideal
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liquids. It might sound a bit strange that both the jet and the armor are
modeled as ideal liquids, but actually this is a good model. The collision
speeds here are from 2 to 10 km/sec and the pressures are of the order of
million atmospheres! In such conditions all elastic properties, as well as
viscosity, become completely irrelevant.

Now we give a precise mathematical formulation of the problem. We have
two colliding jets moving one towards another along the x-axis. Everything
is symmetric with respect to rotation about the x-axis. The first jet has
density ρ1; it moves left to right from −∞, has cross section of diameter 2r1

and speed V1 at −∞. The second jet of density ρ2 moves right to left, from
+∞, has diameter 2r2 at +∞.

The outer boundary of the first jet is formed by a curve L1 (rotated
around the x-axis, and the outer boundary of the second jet is formed by the
curve L2. In addition, we have a common boundary (where the jets collide)
described by a curve γ (rotated about the x-axis). We assume that 0 ∈ γ and
the speeds of both jets are zero at 0 (0 is the collision point on the x-axis).

There is some constant pressure outside the jets and some pressure p,
depending on the point inside the jets. Bernoulli’s law relates the pressure
and the speed:

p = A −
ρ

2
V 2,

where A is a constant which is equal to the pressure at x = 0 on the x-axis,
because V = 0 at this point by assumption. On the outer boundary we have

V = const = V1 on L1 and V = V2 on L2,

because the outside pressure is constant. It follows from Bernoulli’s law that

V2 =

√

ρ1

ρ2

V1. (1)

On the separation surface, the pressures from both sides must be equal, so
we obtain

ρ1V
2

+ = ρ2V
2

−
, (2)

where V+ and V− are the speeds on the left and right sides of γ.
All these considerations hold in both two- and three- dimensional models.

Now we consider the problem in dimension 2.
Let w = f1(z) = u1(z)+ iv1(z) and f2(z) = u2(z)+ iv2(z) be the complex

potentials of out two jets. Because of the symmetry it is sufficient to consider
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the upper halfs of the regions occupied by the jets. Each fj maps conformally
the upper half of the region occupied by the jet onto a horizontal strip. We
choose these strips to be

0 < v < q1 and − q2 < v < 0,

where qi = Viri are intensities of the jets (volume passing through a cross
section per second). We also assume that fi(0) = 0.

The boundary correspondence is as follows: L1 is mapped onto v = q1,
L2 onto v = −q2, the real axis onto two sides of the negative axis and the
curve γ onto the positive axis.

Now we have
|f ′

1(z)| = V1, z ∈ L1, (3)

and using (1):

|f ′

2(z)| = V2 =

√

ρ1

ρ2

V1, z ∈ L2, (4)

and from (2) follows

|f ′

2(z)| =

√

ρ1

ρ2

|f ′

1(z)|. (5)

The positive and negative rays of the real line are mapped on the upper and
lower sides of the negative ray by f1 and f2, respectively, so

arg f ′

1(z) = 0, x < 0, and arg f ′

2(z) = −π, x > 0. (6)

Now we use the same method as in the simpler problem of collision of one jet
with a fixed plane (also posted on this web site). To simplify the problem,
let us consider the inverse functions zi(w) = f−1

i (w), and set

ζ = log f ′

i(zi(w)) = Fi(w).

Then (5) and (6) give

ℜF1(w) = log V1, ℑw = q1, (7)

ℜF2(w) = log V1 + (1/2) log ρ1/ρ2. (8)

On the positive ray we have

ℜF2(w2) = ℜF2(w1) + (1/2) log ρ1/ρ2, ℑF2(w2) = ℑF1(w1), (9)
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where wi = fi(z), and on the negative ray

ℑF1(x + i0) = 0, ℑF2(x − i0) = −π. (10)

From (5) we conclude that w2 =
√

ρ1/ρ2w1, and then from (9) follows that
the function

F2

(

ρ1

ρ2

w

)

−
1

2
log

ρ1

ρ2

is an analytic continuation of F1 across the positive semi-axis.
Thus the problem is reduced to finding a function F (w) = F1(w) analytic

in the strip

−q2

√

ρ1

ρ2

< v < q1

cut along the negative ray, which on the boundary of the strip satisfies

ℜF = log V1

and on the upper and lower edges of the cut respectively the conditions

ℑF (u + i0) = 0, and ℑF (u − i0) = −π, u < 0.

Without loss of generality we may assume that V1 = 1, then q1 = r1; and

in view of (3) q2

√

ρ1/ρ2 = r2. As from the physical meaning of the problem

ℜF (w) must be bounded from above, the function ζ = F (w) must per-
form the conformal map of the strip −r2 < v < r1 with the cut along the
negative ray onto a half-strip. This function can be found using the Schwarz-
Christoffel formula.
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