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The natural question arises, how the solution of the one-dimensional wave
equation obtained by Fourier’s method is related to the solution that we
earlier obtained by d’Alembert’s method.

Consider the wave equation on an interval 0 < x < :

Uy = Uy, 0< <7

with the boundary conditions

u(0) = u(m) =0,
and initial conditions
u(z,0) = ¢(x), u(z,0)=0, 0<z<m. (1)
d’Alembert’s formula gives
u(z,t) = ; (6 + ct) + dla — ct)) (2)

where ¢ is the odd 2w-periodic extension of the initial shape ¢.
Every real 2m-periodic function, subject to some smoothness conditions,
can be represented by a Fourier series:

3(z) = % © 3 ancos(na) + 3 by sin(n). (3)

n=1 n=1

The Fourier coefficients a,,, b, are uniquely determined by the function.



When the function ¢ is odd, its Fourier expansion must be odd, so a,, = 0
for all n > 0, and we have the so-called sine Fourier series,

o(x) = i b, sin(nx).

Let us plug this expression to the d’Alembert formula (2), and use trigono-
metric identities

sin(A + B) = sin A cos B 4 cos Asin B

to simplify the result. We obtain

u(z,t) = i by, sin(nx) cos(nct), (4)
n=1
where 5 e
b, = ;/0 ¢(z) sin(nx)dz,

because ¢(z) = ¢(z), 0 < x < L. This is exactly the same formula that was
obtained by Fourier method.

In general, let f be an arbitrary function defined on a symmetric interval
[a,b] (or on the whole real line). Then there is a unique decomposition

f:fe+fo (5>

into the sum of an even function f. and odd function f,. Indeed, we can set

fe(z) = (f(x) + f(=2))/2 and fo(x) = (f(z) — f(—=x))/2. Then evidently f,
is even and f, is odd, and their sum is f. If we had two such decompositions,
say (5) and another one, f = f* + f¥ then f. — f* = f, — f2, but a function
which is simultaneously even and odd must be the zero function. So the
second decomposition must be the same as the first one.

Formula (3) actually gives us this decomposition: the part with cosines
is even and the part with sines is odd.

Let us consider some other boundary conditions, for example,
uz(0,t) =0, wu(mt)=0,

which means that the right end is fixed while the left end is free. (Imagine
that there is a little ring attached to the string on the left end which is
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allowed to slide without friction on a vertical rod). Let us take the initial
condition (1). Of course function ¢ must also satisfy ¢/'(0) =0, ¢(L) = 0.

The question is how to extend such a function to the whole real line, so
that we can use d’Alembert’s formula with this extension.

The answer is that we should extend it to become even on [—L, L], then
¢'(0) = 0 will hold automatically. On the other hand the condition on the
right end requires an odd extension about this end, that is &(L +x) =
—¢(L — z), which is the same as ¢(z) = —(2L — ). These two properties
will make our extension 4L-periodic, indeed,

¢(z) = ¢(—x) = —p(2L + z) = $(4L + ),

and the corresponding Fourier series will be
o(x) = > as, cos(mna/2L).
0

This is again consistent with what was obtained with Fourier’s method.

The question may be asked why do we need a complicated Fourier series
solution if we have a simple d’Alembert’s solution.

Let us analyze what we really want to know about oscillations of a string,
for example of a string of a musical instrument. We want to know how a given
string will sound, first of all its pitch. The pitch depends on the frequency
of oscillation. Our solution (4) shows that the oscillation is a superposition
of oscillations with frequencies nc/(27). We assumed for simplicity that the
length of the string is m. For a string of length L these frequencies will
be nc/(2L). It is an experimental fact that we perceive the lowest present
frequency as the pitch. Soit is ¢/(2L); this is called the fundamental tone, and
the rest of the frequencies are called overtones. Notice that for a string, they
are integer multiples of the fundamental tone. To compute this fundamental
frequency, we need to know c¢. Derivation of the wave equation (p. 388-389
of the book) shows that ¢ = T'/p, where T is the force stretching the string,
and p is the density. To we obtain that the fundamental frequency equals

T 1

p 2L
This is called Mersenne’s Law. It has an interesting history. That the funda-
mental frequency is inverse proportional to the length of a string was discov-
ered in ancient Greece, ancient historians credit this discovery to Pythagoras



himself. If this is so, this is probably the earliest discovery of a mathematical
law of nature. The dependence on tension T and density p was discovered
only in 17th century by a music theorist Marin Mersenne.

This is what concerns pitch. Another characteristic of a sound we hear
is called timbre. (This is how we tell the sound of one musical instrument
from the sound of another one, for example a violin and and piano sound
differently, even when we play the same note). And it turns out that tim-
bre depends on the relative size of the Fourier coefficients a,,b,! In other
words, our ear and brain together work like a Fourier analyzer: they detect
frequencies and amplitudes of harmonics present in the sound. For example
the oscillations a cost + bcos2t and acost + bcos2(t 4 ¢) are perceived by
our ear as exactly the same,; we do not hear the dependence on ¢. Only
frequencies 1 and 2 and amplicudes a, b are relevant for what we hear, but
not the phase c.

This is an experimental law discovered by Georg Ohm, the same person
who discovered an even more famous law of electric resistance. See “Ohm’s
acoustic law” on Wikipedia.

Interestingly, we perceive light in the same way: only frequencies and
amplitudes are relevant. So our eye is also a harmonic analyzer.

That all higher frequencies are integer multiples of the fundamental tone
is a property of a string. Later we will analyze oscillations of other shapes
and will see that this is not always so. This explains why string musical
instruments sound differently from other instruments.



