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Littlewood, when he makes use of an algebraic
identity, always saves himself the trouble of prov-
ing it; he maintains that an identity, if true, can
be verified in few lines by anybody obtuse enough
to feel the need of verification.

Freeman Dyson [4]

Abstract

We study elementary eigenfunctions y = peh of operators L(y) =
y′′+Py, where p, h and P are polynomials in one variable. For the case
when h is an odd cubic polynomial, we found an interesting identity
which is used to describe the spectral locus. We also establish some
asymptotic properties of the QES spectral locus.
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1. Let h and p be two polynomials in one variable. When y = p(z)eh(z)

satisfies a second order differential equation

y′′ + Py = λy, (1)

where P is a polynomial? Substitution gives

p′′

p
+ 2

p′

p
h′ + h′′ + h′

2
+ P − λ = 0. (2)
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Such P exists if and only if

p′′ + 2p′h′ is divisible by p. (3)

Another criterion is obtained if we consider the second solution y1 of (1)
which is linearly independent of y. This second solution can be found from
the condition

yy′1 − y′y1 = 1. (4)

Solving (4) with respect to y1 we obtain

y1 = peh
∫

p−2e−2h. (5)

As all solutions of (1) must be entire functions, we conclude that

all residues of p−2e−2h vanish. (6)

This condition is necessary and sufficient for y = peh to satisfy equation
(1) with some P . Indeed, if (6) holds, then y1 defined by (5) is an entire
function, so (y, y1) is a pair of entire functions whose Wronski determinant
equals 1, so this pair must satisfy a differential equation (1) with entire P ,
and asymptotics at infinity show that P must be a polynomial.

Thus conditions (3) and (6) are equivalent. One can give another equiv-
alent condition in terms of zeros of p, as in [14]. Let

p(z) =
n
∏

j=1

(z − zj), pk(z) = p(z)/(z − zk).

Then (3) is equivalent to

p′′(zk) + 2p′(zk)h
′(zk) = 0,

for all k = 1, . . . , n. We have p′(zk) = pk(zk) and p′′(zk) = 2p′k(zk), so the
condition

∑

j 6=k

1

zk − zj
= −h′(zk), 1 ≤ k ≤ n, (7)

is equivalent to (3) and (6). Equation (7) is the equilibrium condition for
n unit charges at the points zk in the plane, repelling each other with the
force inverse proportional to the distance, and in the presence of external
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field h′(z). Equations (7) express the fact that (z1, . . . , zn) is a critical point
of the “master function”

Ψ(z1, . . . , zn) =
∏

(j,k):k<j

(zk − zj)
∏

k

eh(zk).

2. From now on we suppose that h is an odd polynomial of degree 3, which
we write in the form

h(z) = z3/3 − bz. (8)

Suppose that all residues of p−2e−2h vanish. Then the integral
∫

p−2e−2h is a
meromorphic function in the plane. Surprisingly, the integral of some linear
combination

∫

(

p2(−z)e−2h(z) − Cp−2(z)e−2h(z)
)

is not only meromorphic but is an elementary function! Here C is a constant
depending on b and p.

Conjecture. Let h be given by (8). Let p be a polynomial. All residues of
p−2e−2h vanish if and only if there exist a constant C and a polynomial q
such that

(

p2(−z) − C

p2(z)

)

e−2h(z) =
d

dz

(

q(z)

p(z)
e−2h(z)

)

. (9)

In other words:

p2(z)p2(−z) − C = q′(z)p(z) − q(z)p′(z) − 2q(z)p(z)h′(z).

It is known [3] that for given h of the form (8) there exist polynomials p of
any given degree such that all residues of p−2e−2h vanish. These polynomials
p have simple roots. We verified the conjecture for deg p ≤ 4 by symbolic
computation with Maple. We don’t know whether there is any analog of the
Conjecture for other polynomials h.

Substituting pn(z) = zn + azn−1 + . . . into (2) and using (8), we conclude
that

P (z)−λ = −h′2(z)−h′′(z)−2nz+2a = −z4+2z2b−2(n+1)z−b2+2a. (10)

We choose λ = b2 − 2a so that P (0) = 0. Equation (2) now becomes

p′′n + 2(z2 − b)p′n − (2nz − 2a)pn = 0. (11)
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Coefficients of pn can be now determined by a linear recurrence formula.
Putting

pn(z) =
n
∑

j=0

ajz
n−j, a−1 = 0, a0 = 1, a1 = a,

we obtain the recurrence

jaj = aaj−1 − b(n− j + 2)aj−2 +
(n− j + 2)(n− j + 3)

2
aj−3. (12)

Coefficients aj are found from this formula one by one beginning from a1 =
a. Vanishing of the constant term in (11) gives a polynomial equation
Q∗

n+1(b, a) = 0 in which we can substitute a = (b2 − λ)/2 and write it as

Qn+1(b, λ) = 0. (13)

We have degλQn+1 = n + 1, [3]. For every b and every λ satisfying this
equation, the differential equation (1), with P as in (10), has a unique solution
y = pne

h where pn is a monic polynomial of degree n. Coefficients of pn are
polynomials in b and λ.

Polynomials Qn+1 are fundamental for our subject, but little is known
about them. It seems hard to investigate them algebraically. In section 7,
we will use analytic tools to establish some properties of these polynomials,
in particular we will find the terms of top weight and asymptotics of λ as
b→ ∞.

Functions y = pne
h are eigenfunctions of the operator

LJ(y) = y′′ − (z4 − 2bz2 + 2Jz)y, J = n+ 1 (14)

with eigenvalue λ. This operator maps the space {peh : deg p ≤ n} of
dimension n + 1 into itself. For each non-negative integer n, and generic b,
the operator (14) has n+ 1 eigenfunctions of the form pne

h with eigenvalues
λ which are solutions of (13).

We assume without loss of generality that Qn+1 is monic as a polyno-
mial in λ, and pn is a monic polynomial in z. Then the constant C in the
Conjecture turns out to be

C(b, λ) = αn
∂

∂λ
Qn+1. (15)

Symbolic computation for small n shows that αn = (−1)n2−2n.
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3. Eigenfunctions peh do not belong to L2(R), but they satisfy the boundary
conditions

y(te±πi/3) → 0 as t→ ∞. (16)

With these boundary conditions, the operator (14) is not Hermitian but PT-
symmetric [3, 9, 13].

Physicists write the boundary value problem for the operator LJ with
boundary conditions (16) in the equivalent form

w′′ + (ζ4 + 2bζ2 + 2iJζ + λ)w = 0, w(te−i(π/2±π/3)) → 0, t→ ∞, (17)

which corresponds to the rotation of the independent variable iζ = z, w(ζ) =
y(iζ). We also find this form convenient is certain arguments, and will use it
in sections 6–7. We keep the notation y(z) for an eigenfunction of (14), (16),
while w(ζ) stands for an eigenfunction of (17).

It is known that the boundary value problem (14), (16) has an infinite
sequence of eigenvalues tending to infinity [11]. Eigenvalues λ are solutions
of the equation

Fn+1(b, λ) = 0, (18)

where Fn+1 is a real entire function on C2 which is called the spectral deter-
minant [9]. The set of all solutions of (18) in C2 is called the spectral locus
and we denote it by Zn+1. As Fn+1 is real, the set of eigenvalues is symmetric
with respect to the real line when b is real. For each real b, all sufficiently
large eigenvalues (how large, depends on b) are real [9].

Equation (18) is reducible: Fn+1 is evidently divisible by Qn+1. On the
other hand, equation (13) is irreducible, as follows from [6] or [2], and it
defines a smooth algebraic curve in C2. This algebraic curve will be denoted
by ZQES

n+1 .

4. Now we discuss a corollary of our conjecture that we can prove. Let us
fix a simple curve γ in C parametrized by the real line, with the properties
γ(t) → ∞, arg γ(t) → ±π/3, t→ ±∞. Then (9) implies

∫

γ
p2(z)e2h(z)dz = C

∫

γ
p−2(−z)e2h(z)dz. (19)

To obtain this we replace z 7→ −z in (9) then integrate along γ; the integral
in the right hand side of (9) vanishes because ℜh(z) → −∞ as z → ∞ on γ.
Let γz be a curve consisting of the piece {γ(t) : −∞ < t ≤ 0} followed by a
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curve from γ(0) to z. Put

g(z) = p(−z)e−h(z)
∫

γz

p−2(−ζ)e2h(ζ)dζ.

Then g−(z) := g(−z) satisfies Ln+1(g
−) = λg− so g satisfies L−n−1(g) = λg.

To check this, we make a substitution z 7→ −z in (14). Moreover, if the
integral in the right hand side of (19) is zero, then g also satisfies the boundary
condition (16). Thus we obtain

Theorem 1. The points (b, λ) ∈ ZQES
n+1 where the eigenfunction y = peh

satisfies
∫

γ
y2(z)dz = 0 (20)

are either zeros of C(b, λ) or points of intersection of ZQES
n+1 with Z−n−1.

We will prove Theorem 1 in section 5.
Equation (20) is the well-known condition of level crossing, which we

discuss in section 6.
Thus the Corollary says that the eigenvalues at the points on ZQES

n+1 which
are singular points of Zn+1 are eigenvalues of two spectral problems, one for
Ln+1, another for L−n−1.

5. Proof of Theorem 1. Assuming that all residues of p−2e−2h vanish, we will
prove that the right and left hand sides of (19) with C as in (15) have the
same zeros on ZQES

n+1 . Fix the integer n ≥ 0. Let ψk = pke
h, k = 0, . . . , n,

be all elementary eigenfunctions of Ln+1. They are linearly independent,
and they span a space V invariant under Ln+1. As V is a subspace of U =
{peh : deg p ≤ n}, we conclude that V = U . So the Wronski determinant
W = W (ψ0, . . . , ψn) is proportional to the Wronski determinant

W (eh, zeh, . . . , zneh) =

(

n
∏

k=0

k!

)

e(n+1)h.

Now let us perform the Darboux transform of Ln+1 killing these n+ 1 eigen-
functions. We recall that Darboux transform (see, for example [5]) applies
to any operator −D2 + V with eigenfunctions ψ0, . . . , ψn and corresponding
eigenvalues λ0, . . . , λn. The transformed operator is

−D2 + V − 2
d2

dz2
logW (ψ0, . . . , ψn),
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and its eigenvalues are those eigenvalues of −D2 +V which are distinct from
λ0, . . . , λn. As 2(logW )′′ = 2(n+ 1)h′′ = 4(n+ 1)z, the result of application
of the Darboux transform to Ln+1 and eigenfunctions ψk, k = 0, . . . , n, is
L−n−1.

If the left hand side of (19) is zero at some point (b, λ), then by a result
of Trinh [13] (see also next section), either ∂Qn+1(b, λ)/∂λ = 0, or (b, λ) is a
self-intersection point of Zn. In the second case, (b, λ) belongs to the spectral
locus of the Darboux transform L−n−1. This means that the equation

L−n−1(y
∗) = λy∗

has a solution y∗ that tends to 0 on γ. Then y1 = y∗(−z) tends to 0 on −γ
and satisfies Ln+1(y1) = λy1. So y1 satisfies Ln+1(y1) = λy1 and is linearly
independent of y. So y1 = y

∫

y−2e−2h. As this tends to 0 on both ends of −γ,
we conclude that

∫

y−2e−2h tends to 0 on both ends of −γ. So y∗(z) = y1(−z)
tends to 0 on both ends of γ and this means that the right hand side of (19)
is 0.

This proves (19) with C = αn∂Qn/∂λ, where αn(b, λ) 6= 0 on ZQES
n+1 .

Combining the Darboux transform used in the prof of Theorem 1 with
the result of Shin [10], we obtain

Theorem 2. For every positive integer J , all non-QES eigenvalues of LJ

with boundary conditions (16) are real.

Proof. These eigenvalues are also eigenvalues of L−J with boundary con-
ditions (16). Shin [10] proved that all eigenvalues of Lα with α ≤ 0 are real.

6. As Qn+1 and Fn+1 are real functions, it is reasonable to consider real
solutions of equations (18) and (13). Eigenfunctions y(z) corresponding to
these real solutions are real, while eigenfunctions w(ζ) (see (17)) are PT-
symmetric, that is w(−ζ) = w(ζ). These real solutions (b, λ) form curves in
R2 which we call the real spectral locus Zn+1(R) and the QES real spectral
locus ZQES

n+1 (R), respectively.

Now we discuss (20). First we state a result which describes ZQES
n+1 (R).

Theorem 3. ZQES
n+1 (R) consists of [n/2]+1 disjoint analytic curves γn,m, 0 ≤

m ≤ [n/2] (analytic embeddings of R to R2).
For (b, λ) ∈ γn,m, the eigenfunction has n zeros, n− 2m of them real.
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If n is odd then b → +∞ on both ends of each curve γn,m. If n is even
then the same holds for 0 ≤ m < n/2, but on the ends of γn,n/2 we have
b→ ±∞.

If (b, λ) ∈ γn,m, (b, µ) ∈ γn,m+1 and b is sufficiently large, then µ > λ.

The proof of this theorem will be published elsewhere. It follows the
method of [7] where similar results were established for real spectral loci
of other families of cubic and quartic potentials. The method is based on
singular perturbation and Nevanlinna parametrization of the spectral locus.

Computer generated pictures of Zn+1(R) show an interesting phenomenon:
when n is even, the curve γn,n/2 crosses the non-QES part of the spectral lo-
cus [3, Fig. 1]. We will prove that infinitely many such crossings exist for
even n and negative b.

We say that a level crossing occurs at a point (b, λ) of the spectral locus
if ∂Fn+1/∂λ = 0 at this point. If y is the eigenfunction corresponding to a
point (b, λ), then the level crossing occurs if and only if (20) is satisfied [12,
II.7], [13, Thm. 8]. There are two types of level crossing points:

a) Critical points of the function λ at non-singular points of Zn+1. If such a
critical point (b0, λ0) is simple and belongs to Zn+1(R) then the two eigenval-
ues that meet at this point are both real for b on one side of b0 and complex
conjugate on the other side.

b) Singular points of Zn+1. If two eigenvalues collide at a simple self-
intersection point of Zn+1(R) with two distinct non-vertical tangents, then
these eigenvalues both remain real in a neighborhood of b0.

We recall that ZQES
n+1 is a smooth curve. Thus the crossing points on ZQES

n+1

where only QES eigenvalues collide are all of type a), and they satisfy

Qn+1(b, λ) = 0,
∂

∂λ
Qn+1(b, λ) = 0.

For each n, there are finitely many such points on ZQES
n+1 .

We will show that there are infinitely many crossing points of type b)
where QES eigenvalues collide with non-QES eigenvalues. So the curve de-
fined by (18) is not smooth: it has infinitely many self-intersections.

We don’t know whether more complicated singularities than a) and b)
exist; numerical experiments show only singularities of types a) and b).
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Proposition 1. Function

Φn(b, λ) =
∫

γ
y2(z)dz, ZQES

n+1 → C,

where y is the eigenfunction corresponding to (b, λ), has infinitely many zeros
(bk, λk), bk → ∞. When n is even, Φn has infinitely many zeros with negative
bk and real λk.

Proof. We have

Φn(b) =
∫

γ
p2

n(z)e2h(z)dz.

We remind that coefficients of pn and h are algebraic functions of b. When
n = 0 we can take p0 = 1, and then

Φ0(b) =
∫

γ
e(2/3)z3−2bzdz = 22/3πiAi(22/3b),

where Ai is the Airy function [1]. Airy function is a real entire function of
order 3/2 with infinitely many negative simple zeros.

To generalize this to other values of n, we express Φn as a linear combi-
nation of Φ0 and Φ′

0 with coefficients depending on b algebraically. Differen-
tiating Φ0(b) with respect to b, we obtain

∫

γ
zke(2/3)z3−2bzdz = (−2)−kΦ

(k)
0 (b),

and thus
Φn(b) = p2

n(−D/2)Φ0(b),

where D = d/db. Now all Φ
(k)
0 are linear combinations of Φ0 and Φ′

0 with
polynomial coefficients because Ai satisfies the differential equation Ai′′(s) =
sAi(s). So Φn is of the form

Φn(b) = An(b)Φ0(b) +Bn(b)Φ′
0(b), (21)

where An and Bn are algebraic functions.
We claim that every linear combination φ of Φ0 and Φ′

0 with algebraic
coefficients has infinitely many zeros. We prove this claim by contradiction.
Suppose that such a linear combination

φ = a0Φ0 + a1Φ
′
0 (22)

9



has finitely many zeros. Let F be a compact Riemann surface spread on the
Riemann sphere on which a0 and a1 are meromorphic. Then φ is meromorphic
on F\E, where E is the finite set of points of F lying over ∞. At the points
of E, φ has isolated essential singularities. As φ has finitely many zeros
and poles on F\E, we conclude that φ′/φ is meromorphic on F\E. The
growth estimate log |φ(b)| ≤ O(|b|3/2), b → ∞, implies that the points of E
are removable singularities of φ′/φ. Thus φ is the exponent of an Abelian
integral. Now consider (22) as a linear differential equation of first order with
respect to Φ0, whose coefficients belong to the minimal field K that contains
C(b), is algebraically closed, and contains a primitive of every element, and
the exponent of a primitive of every element. As every first order linear
differential equation can be solved by integration we conclude that Φ0 ∈ K
which implies that Ai ∈ K. But this is not so by a well-known classical
theorem of Picard and Vessiot, [8, Theorem 6.6]. This proves our claim.

When n is even, according to Theorem 3, we have a real analytic branch
λ(b) defined for all real b with sufficiently large absolute value. The graph
of this branch is a part of γn,n/2. Using this branch we rewrite the equation
Φn(b) = 0 as

Φ′
0(b)/Φ0(b) = A(b),

where A is a real branch of an algebraic function on (−∞, B) with some
B ∈ R. This last equation has infinitely many negative solutions because Φ0

has infinitely many negative zeros and they are interlaced with zeros of Φ′
0.

This completes the proof of the proposition.

Using the asymptotics of the zeros of Airy’s function [1] we obtain that
the crossing points satisfy bk ∼ −((3/4)πk)2/3, k → ∞.

7. Now we study asymptotics of the eigenvalues λ as b → +∞ and make
conclusions about polynomials Qn+1. Our main result here is the explicit
formula (28) for the top quasi-homogeneous part of Q∗

n+1.
First we obtain a preliminary estimate of solutions λ(b) of equation (13)

for large b:
λ(b) ∼ b2 +O(

√
b), b→ ∞. (23)

To prove this, consider the recurrence (12). For a monomial ambk we define
the weight as m+ 2k. Then (12) implies that

j!aj = aj +
[j/2]
∑

m=1

cm,jb
maj−2m + terms of lower weight.
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Vanishing of the constant term in (11) gives

Q∗
n+1(a, b) = aan + ban−1 + 2an−2 = 0,

so Q∗
n+1 is a sum of a quasi-homogeneous polynomial in a and b of weight

2(n+ 1) and a polynomial of lower weight. This means that a = O(
√
b) and

λ(b) = b2 − 2a satisfies (23).
To obtain more precise asymptotics we use singular perturbation argu-

ments from [7], which we state in the Appendix for the reader’s convenience.
Suppose that b is real and b→ +∞. In the equation (17) we set

ζ = ǫu− iǫ−2, b = ǫ−4, W (u) = w(ǫu− iǫ−2).

The result is

W ′′ + (ǫ6u4 − 4iǫ3u3 − 4u2 − 2iJǫ3u)W + (2J + ǫ2λ− ǫ−6)W = 0, (24)

or

−W ′′ −
(

u2(b−3/4u− 2i)2 − 2iJb−3/4u
)

W = (2J + b−1/2λ− b3/2)W. (25)

When ǫ→ 0, we obtain the limit eigenvalue problem

−W ′′ + 4u2W = µW, (26)

which is a harmonic oscillator with eigenvalues µk = 2(2k+1), k = 0, 1, 2, . . ..
By a general result from [7] (see Appendix), (25) implies that for each k, there
must be a unique eigenvalue λk(b) which satisfies

λk = b2 + (µk − 2J + o(1))
√
b. (27)

We know from (23) that QES eigenvalues have such asymptotic behavior. So
for each QES eigenvalue λ there exists k such that (27) holds. Now we have
to find out what are the values of k for the QES eigenvalues.

To do this, we consider zeros of eigenfunctions. We know that k-th eigen-
function of (26) has [k/2] zeros in the right half-plane, the same number of
zeros in the left half-plane, and one on iR if k is odd. (In fact all these zeros
belong to the real line but this is irrelevant for our argument.) So for every
m = 0, 1, . . . there are two eigenfunctions of the harmonic oscillator (with
k = 2m and k = 2m+1) which have m zeros in the right half-plane, and one
of them (k = 2m+ 1) has a zero on iR.
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Theorem 3 implies that for each given n and for each m ≤ [n/2] and
b sufficiently large positive, there is exactly one curve γn,m, such that the
corresponding eigenfunctions have m zeros in the right half-plane1. We refer
to [7] for the argument showing that the zeros of eigenfunctions w in the
right half-plane do not escape to infinity as b → +∞. Zeros of w on iR do
escape to infinity, except possibly one of them. Thus the branches of QES
eigenvalues must be λ0, . . . , λn satisfying (27).

Putting λk = b2 − 2a(k), and J = n+ 1 in (27) we obtain

a(k) ∼
√
b(n− 2k), 0 ≤ k ≤ n.

We conclude that the top weight term of the polynomial Q∗
n+1 is

n
∏

k=0

(

a− (n− 2k)
√
b
)

=

{

(a2 − b)(a2 − 3b) . . . (a2 − nb), n is odd,
a(a2 − 2b) . . . (a2 − nb), n is even.

(28)

This implies that the degree of the discriminant of Q∗
n+1 is n(n+1)/2, and the

genus of the QES spectral locus is n(n− 2)/4 when n is even and (n− 1)2/4
when n is odd.

8. When b → −∞, our operator (17) also degenerates to a harmonic os-
cillator. However none of the QES eigenvalues of (17) tend to the eigen-
values of this harmonic oscillator as b → −∞. To study this limit, we set
z = ǫu, b = −ǫ−4 and W (u) = w(ǫu) in (17). The result is

W ′′ +
(

ǫ6u4 − 2u2 + 2iJǫ3u+ ǫ2λ
)

W = 0. (29)

As ǫ→ 0, this tends to the harmonic oscillator

−W ′′ + 2u2W = µW,

whose eigenvalues are µk =
√

2(2k + 1), k = 0, 1, 2 . . . . So by the results in
[7] (see Appendix), for every k and for b < −bk, there is an eigenvalue λk(b)
which satisfies

lim
ǫ→0

ǫ2λk(b) =
√

2(2k + 1),

or λk(b) ∼
√
−b. Comparison with (23) shows that these eigenvalues λk

cannot come from the QES spectrum.

1Remember that we are working here with eigenfunctions w(ζ) = y(iζ), where y is an
eigenfunction from Theorem 3.
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Appendix. Singular perturbation of polynomial potentials

Here we state the main singular perturbation result of [7] and verify that
the eigenvalue problems (24) and (29) satisfy all conditions that imply con-
tinuity of the discrete spectrum at ǫ = 0.

Consider the eigenvalue problem

−y′′ + Pǫ(z, b)y = λy, y(z) → 0, z ∈ R1 ∪ R2. (30)

Here z is the independent variable, P is a polynomial in z whose coefficients
depend on parameters ǫ > 0 and b ∈ C, dependence on b is holomorphic,
and R1, R2 are two rays in the complex plane defined by Rk = {teiθk ∈ Cz :
t > 0}, k = 1, 2.

Suppose that

Pǫ(z, b) =
d
∑

j=0

aj(b, ǫ)z
j,

where ad(ǫ) > 0 does not depend on b, P0(z, b) = am(b, 0)zm + . . ., where
m < d, and the dots stand for the terms of smaller degree in z.

Let

P ∗
ǫ (z, b) =

d
∑

j=m

aj(b, ǫ)z
j.

For every polynomial potential P (z) = anz
n + . . . of degree n, the sepa-

ration rays are defined by

{z ∈ C : anz
n+2 < 0}.

Turning points are just zeros of the potential P in the complex plane.2 Ver-
tical line at a point z is the line defined by P (z)dz2 < 0. If P depends on
parameters, then the separation rays, turning points and the vertical line
field depend on the same parameters.

We assume that there exists δ > 0 and ǫ0 > 0 and a compact K ⊂ Cb,
such that for all ǫ ∈ (0, ǫ0) and for all b ∈ K and k ∈ {1, 2}, the following
conditions are satisfied:

(i) | arg z − θk| ≥ δ for all turning points z ∈ C\{0} of P ∗
ǫ ,

2This terminology is somewhat unusual but convenient here. In the standard termi-
nology, turning points are zeros of P − λ.
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(ii) For every point z ∈ Rk, the smallest angle between Rk and the vertical
line with respect to P ∗

ǫ at this point is at least δ.

(iii) Rk are not separation rays, for Pǫ, ǫ > 0 or P0.

(iv) All coefficients aj(b, ǫ) are bounded from above and |am(b, ǫ)| is
bounded from below.

Theorem A. If the conditions (i)–(iv) are satisfied, then the spectral deter-
minant Fǫ of the eigenvalue problem (30) converges as ǫ → 0 to the spectral
determinant of (30) with ǫ = 0:

Fǫ → F0, ǫ→ 0,

uniformly for (b, λ) ∈ K ×K1, for every compact K1 ⊂ Cz.

Fig 1. Stokes complex of P ∗
ǫ .

Now we verify that the family of potentials in (24) satisfies all conditions
(i)-(iv) with d = 4,m = 2. We have

P ∗
ǫ (z) = −ǫ6z4 + 4iǫ3z3 + 4z2,

P ∗
0 (z) = 4z2. The turning points are 0 and 2iǫ−3. The separation rays are

arg z ∈ {0, π,±π/3,±2π/3} for P ∗
ǫ , ǫ > 0 (shown in thin solid lines in Fig. 1),

and arg z ∈ {±π/4,±3π/4} for P0 (dashed lines in Fig. 1). The normalization
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rays are arg z ∈ {−π/2± π/3}. The bold lines in Fig. 1 represent the Stokes
complex, that is the integral curves of the vertical direction field P ∗

ǫ (z)dz2 < 0
that are adjacent to the turning points.

Thus conditions (i),(iii) and (iv) evidently hold. It remains to verity (ii).
To do this we parametrize R1 as z = te−iπ/6 : t > 0 and find the

direction of the line field arg dz at z by inserting this parametrization to
arg(P ∗

ǫ (z)dz2) = π. We obtain

argP ∗
ǫ (z) ∈ (−π/2, π/3), ± arg dz2 ∈ (2π/3, 4π/3),

so the angle between dz and R1 is at least π/6. Verification for R2 is similar.
We leave to the reader to verify that conditions of Theorem A are satisfied

for (29).
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