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Abstract

We prove that degrees of rational solutions of an algebraic differen-
tial equation F (dw/dz,w, z) = 0 are bounded. For given F an upper
bound for degrees can be determined explicitly. This implies that one
can find all rational solutions by solving algebraic equations.

Consider the differential equation

F (w′, w, z) = 0, (w′ = dw/dz) (1)

where F is a polynomial in three variables.

Theorem 1 For every F there exists a constant C = C(F ) such that degree
of every rational solution w of (1) does not exceed C.

This statement is not true for differential equations of higher order. In-
deed, all functions wn(z) = zn satisfy(

z
w′

w

)′
= 0.

We will show that the bound for degree C(F ) can be determined effec-
tively. So theoretically it is possible to find all rational solutions of (1) by
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substituting an expression for w with indeterminate coefficients and solv-
ing the resulting system of algebraic equations. It is a challenging unsolved
question whether Theorem 1 can be extended to algebraic solutions. Partial
results in this direction were obtained by H. Poincaré in [8, 9].

Before proving the theorem in full generality we give a very simple proof
for the particular case when the equation is solved with respect to derivative.
This simplified proof does not give any effective bound for C.

Proof in the special case. (The method is similar to [3], see also [4]).
Assuming that F is linear with respect to w′ we write the equation in the

form
F1(w, z)(w′) + F0(w, z) = 0,

where Fj are polynomials in w and z for j = 0, 1. Assume that the equation
has infinitely many rational solutions (otherwise there is nothing to prove).
Then we can find three different rational solutions w1, w2 and w3 such that

F1(wi(z), z) 6≡ 0, i = 1, 2, 3. (2)

Let us consider the finite set E ⊂ C̄ consisting of the following points:

(i) if at some point z0 we have F1(wi(z0), z0) = 0 for some i then z0 belongs
to E;
(ii) the point ∞ and all poles of wi, i = 1, 2, 3 belong to E;
(iii) if wi(z0) = wj(z0) for some i 6= j then z0 belongs to E.

Condition (2) guarantees that the subset of E defined in (i) is finite. The
subsets of E described in (ii), and (iii) are evidently finite.

Denote by R the set of all rational solutions, different from w1, w2, w3 and
let w ∈ R. We claim that

w(z) 6= wi(z) for i = 1, 2, 3 and z ∈ C̄\E. (3)

Indeed, if for example w(z0) = w1(z0) := w0 and z0 /∈ E, then w0 6= ∞ and
F1(w0, z0) 6= 0 in view of (ii) and (i). Thus by the Uniqueness Theorem for
solutions of the Cauchy problem we conclude that w = w1, which contradicts
to our assumption.

Now we consider the following set of rational functions

S =

{
(w − w1)(w3 − w2)

(w − w2)(w3 − w1)
: w ∈ R

}
.
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It follows from (3) and (iii) that functions from S can take the values 0, 1 and
∞ only on E. On the other hand, if f is a rational function of degree d then
the preimage f−1({0, 1,∞}) contains at least d + 2 distinct points, which
follows from the Riemann–Hurwitz formula. Thus the degrees of functions
in S are bounded and so the degrees of functions in R are bounded.

This proof evidently does not provide any algorithm for estimating C(F )
for a given equation, or for checking whether a rational solution exists at
all. So we give another proof, which permits at least in principle to find
the constant C(F ) effectively, and which is applicable to all polynomials F .
In what follows we will always assume that the polynomial F is irreducible,
which does not restrict generality.

Preliminaries and notations.
We need some facts from the theory of algebraic functions ([1] or [10, Ch.

18,19] are standard references) and from differential algebra [7].
Let k = C(z) be the field of rational functions and K be its algebraic

closure, that is the field of all algebraic functions. The degree of a rational
function has a natural extension to K. Namely for α ∈ K we denote by
T (α) the number of poles of α on its Riemann surface (counting multiplicity),
divided by the number of sheets of this Riemann surface over C̄. So T is an
absolute logarithmic height in the terminology of [6, Ch. III, §1]. Its definition
clearly does not depend on the Riemann surface on which α is defined. The
following properties are evident:

T (αn) = nT (α) for positive integers n (4)

and
T (α−1) = T (α), α ∈ K. (5)

For α ∈ K we denote by i(α) the total ramification. That is if a germ of α
at z0 ∈ C is expressed as

α(z) =
∑

an(z − z0)n/m,

(where we assume that m is chosen smallest possible) then this germ con-
tributes m− 1 units to i(α). We have

T (α′) ≤ 2T (α) + i(α) ( ′ = d/dz). (6)
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Given an irreducible polynomial P ∈ K[t1, t2] we consider the factor ring
K[t1, t2]/(P ), where (P ) is the ideal generated by P , and the quotient field
R of this factor ring. Then R is a field of transcendency degree 1 over K.

A valuation ring V ⊂ R is a ring which contains K, is not identical with
R and has the property that for every x ∈ R either x ∈ V or x−1 ∈ V . The
set of all non-invertible elements of a valuation ring V forms a maximal ideal
ν and there is an element t ∈ V , called a local uniformizer, such that ν = tV

and ∩∞n=1t
nV = ∅. The factor ring V/ν is equal to K, so every valuation ring

defines a map p : R→ K ∪ {∞} with the properties:

p(x+ y) = p(x) + p(y),

p(xy) = p(x)p(y)

whenever the expressions in the right sides of these formulas are defined1 and
p(α) = α if α ∈ K. A map with such properties is called place. Given a
place one can recover the corresponding valuation ring as Vp = p−1(K) and
there is one-to-one correspondence between places and valuation rings.

Let a place p be given and let Vp be its valuation ring. Every element of
the field R can be expressed in the form x = tnpu, where u is an invertible
element of Vp, tp is a local uniformizer and n is an integer. This integer n is
called the order of x at the place p and denoted by ordpx.

In the case when R = K(x) the places are in natural one-to-one corre-
spondence with the set K ∪{∞}, that is p(y) is just the value of the rational
function y at the point p ∈ K ∪ {∞}.

Let R1 ⊂ R2 be a finite field extension where both R1 and R2 have tran-
scendency degree 1 over K. Then every valuation ring Vp ⊂ R1 is contained
in some valuation ring Vq ⊂ R2. We say that this place q in R2 lies over the
place p in R1. There is at least one but finitely many places in R2 lying over
a fixed place in R1.

Let t1, t2 ∈ R and P be an irreducible polynomial such that P (t1, t2) = 0.
If some elements α1, α2 ∈ K satisfy P (α1, α2) = 0 then there is a place p in
R such that p(t1) = α1 and p(t2) = α2.

A divisor is an element of free Abelian group generated by places. If δ =
n1p1 + . . .+nqpq is a divisor then its degree is defined by deg δ = n1 + . . .+nq.

1we use the ordinary conventions: α +∞ = ∞, α ∈ K and α.∞ = ∞, α ∈ K∗ but
∞+∞ or 0.∞ are undefined
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A divisor is called effective if nj ≥ 0 for all j. This defines a partial order
relation on the set of divisors: δ1 ≥ δ2 if δ1 − δ2 is effective. Every divisor δ
can be written as δ = δ+−δ−, where δ+ and δ− are effective divisors without
common places.

For x ∈ R we denote by δ(x) the divisor
∑

(ordpx)p, where summation
is spread over all places in R (Only finitely many terms in this sum have
non-zero coefficients). For every x ∈ R we have deg δ(x) = 0. To every field
of transcendency degree 1 corresponds a non-negative integer g, called genus
with the following property: for every divisor δ of degree deg δ ≥ g there
exists an element x ∈ R such that δ(x) ≥ −δ. This is a corollary from the
Riemann–Roch Theorem.

Let us recall the construction of the Newton polygon (see, for example
[5, IV,§3]). Let x and y be elements of R satisfying an irreducible relation

P0(x) + P1(x)y + . . .+ Pm(x)ym = 0, Pj ∈ K[x]. (7)

Let p1, . . . , pn be all places in R which lie over some place p in K(x) ⊂ R
and t be a local uniformizer at p.

Mark on the plane the points with coordinates (j, ordpPj(x)), 0 ≤ j ≤ m,
and consider the maximal convex function whose graph lies below or passes
through these points. The slopes of this graph are exactly the numbers
−ordpjy/ordpj t.

We use two propositions which follow from consideration of Newton’s
polygon.

Proposition 1 The following statements about x and y in (7) are equivalent:
a) ordpx ≥ 0 implies ordpy ≥ 0 for every place p in R
and
b) deg Pm = 0.

Proof. Let p be a place in K(x) and q be a place in R lying over p. Then
ordpx ≥ 0 if and only if ordqx ≥ 0. Assume that these inequalities do hold for
p and q. We have ordpPj(x) ≥ 0, j = 0, . . . ,m. Then a) is equivalent to the
condition that all slopes of the Newton polygon constructed for p are non-
positive. On the other hand, polynomials Pj have no common factor because
the equation (11) is irreducible, so ordpPk(x) = 0 for some k ∈ {0, . . . ,m}.
We conclude that ordpPm(x) = 0 for all places p in K(x) such that ordpx ≥ 0.
This is equivalent to b).
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Proposition 2 If δ−(y) ≤ δ−(x) then deg Pj ≤ m− j, 0 ≤ j ≤ m.

Proof. Consider the infinite place q in K(x). A local uniformizer at this
place is 1/x. We have ordqPj(x) = −deg Pj. Our assumption about x and
y implies that all slopes of the Newton polygon are at most 1. Furthermore,
degPm = 0 by Proposition 1. We conclude that degPj ≤ m− j, 0 ≤ j ≤ m.

Lemma 1 If x, y ∈ R and δ−(y) ≤ δ−(x) then there exists a constant C,
depending on x and y such that for every place p in R with ordpx ≥ 0 we
have

T (p(y)) ≤ T (p(x)) + C.

Proof. Consider the irreducible polynomial relation (7) between x and y.
By Proposition 2 we can rewrite (7) in the form(

y

x

)m
+
Pm−1(x)

x

(
y

x

)m−1

+ . . .+
P0(x)

xm
= 0, where degPj ≤ m− j,

and substitute p(x) and p(y) instead of x and y. It is clear that poles of
p(y) can occur only at poles of p(x) or at the poles of coefficients of Pj. This
proves the lemma.

Lemma 2 Let P ∈ K[t1, t2] be an irreducible polynomial of degree m with
respect to t1 and of degree n with respect to t2. Given ε > 0 there exists a
constant C0 depending on P and ε such that for every α and β in K satisfying

P (α, β) = 0

we have
(n− ε)T (β)− C0 ≤ mT (α) ≤ (n+ ε)T (β) + C0.

This is a special case of a general theorem about heights on algebraic varieties
[6, Ch. 4, Proposition 3.3]. We give here a simple proof for our special case
following the lines of [2].

Proof of lemma 2. Consider the field R associated to the polynomial P .
We have deg δ−(t1) = n and deg δ−(t2) = m. Set s1 = tm1 and s2 = tn2 . These
elements are connected by an irreducible polynomial relation

Q(s1, s2) = 0,
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which has the same degree with respect to s1 and s2. In view of the property
(4) it is enough to prove

T (p(s1)) ≤ (1 + ε)T (p(s2)) + C (8)

for every place p in R. (The inequality in the opposite direction is then
obtained by reversing the roles of s1 and s2).

Choose an integer N so large that

N + g

N
≤ 1 + ε, (9)

where g is the genus of R.
Consider the divisor δ = (N + g)δ−(s2)−Nδ−(s1) whose degree is equal

to gmn ≥ g. By the corollary of the Riemann–Roch theorem mentioned
above there is an element x ∈ R such that δ(x) ≥ −δ. It follows that

(N + g)δ−(s2) = δ+ ≥ δ−(x),

so by Lemma 1 we conclude that

(N + g)T (p(s2)) ≥ T (p(x))− C1 (10)

for every place p. On the other hand

Nδ−(s1) = δ− ≤ δ+(x) = δ−(x−1)

so by Lemma 1 and property (5) we conclude that

NT (p(s1)) ≤ T (p(x−1)) + C2 = T (p(x)) + C2.

Combined with (10) and (9) this gives (8). The lemma is proved.
Now we consider the differential equation (1).
A differential field is a field with an additive map D into itself which

satisfies D(xy) = D(x)y+xD(y). Such a map is called derivation. As before
we define a field R = K[w′, w]/(F ) of transcendency degree 1 over K. There
is a unique derivation D : R → R such that D(w) = w′ and D(α) = dα/dz
for every α ⊂ K. Here d/dz stands for the usual differentiation in K.

We say that the differential field R is Fuchsian if the derivation maps every
valuation ring into itself. (In [7] such fields are called “differential fields with
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no movable singularities”). The following classification of Fuchsian fields can
be found in [7]:

1. If R is of genus 0 there is an element x ∈ R such that R = K(x) and
Dx = a2x

2 + a1x+ a0 with some ai ∈ K.
2. If R is of genus 1, there are two possibilities:

a) There is an element x ∈ R such that R = K(x,Dx) and
(Dx)2 = a(x− e1)(x− e2)(x− e3) with some a ∈ K and
ei ∈ C, e1 + e2 + e3 = 0 (Poincaré field) or

b) there are x, y ∈ R such that R = K(x, y) and
Dx = Dy = 0 (Clairaut field).
3. If R is a Fuchsian field of genus greater then 1 then R is a Clairaut

field (see 2a)).
An inspection of the proofs in [7] shows that there is an explicit algo-

rithm of finding the element x, mentioned in 1,2 or 3. More precisely, if
the equation F (w′, w) = 0 is given one can write explicitly the irreducible
equation Q(x, w) = 0 where x is the element mentioned in 1,2 or 3. This also
gives explicitly the coefficients a, ai, ei, i = 1, 2, 3 of the differential equations
satisfied by x in 1 or 2.

Now we are ready to give the

Proof of Theorem 1. We consider four cases.
Case 1. R is not Fuchsian. This means that there is a place p whose

valuation ring Vp is not closed with respect to derivation. Let t be a lo-
cal uniformizer at p. Then ordpDt < 0. Consider the irreducible equation
connecting t and Dt:

Pm(t)(Dt)m + . . .+ P0(t) = 0, Pj ∈ K[t]. (11)

By Proposition 1 we have degPm > 0. Now put t = x−1 + a where a ∈ C is
such that Pj(a) 6= 0 for 0 ≤ j ≤ m. From (11) we obtain the equation for x
and Dx:

Pm

(
1 + ax

x

)
x−2m(−Dx)m + . . .+ P0

(
1 + ax

x

)
= 0. (12)

We put dj = degPj and

d = max
j
{dj + 2j} ≥ 2m+ 1 (because dm ≥ 1) (13)
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After multiplying (12) by xd we obtain an irreducible polynomial equation

Qm(x)(Dx)m + . . .+Q0(x) = 0 (14)

where degQj = d− 2j. In particular degQ0 = d ≥ 2m+ 1 in view of (13).
We have x = r(w,w′) where r is a rational function with coefficients in K.

A rational solution α ∈ C(z) of the differential equation F (w′, w) = 0 defines
a differential place s and we have s(x) = r(α, dα/dz) so all ramification points
of the algebraic function s(x) may come only from the coefficients of r. Thus
the total ramification of s(x) is bounded by a constant C1 depending only
on F and we have by (6)

T (s(Dx)) ≤ 2T (s(x)) + C1. (15)

On the other hand, applying Lemma 2 to (14) we obtain

T (s(Dx)) ≥ 2m+ 1

m
T (s(x))− C2 (16)

with some constant C2 which also depends only on F . Inequalities (15) and
(16) imply that T (s(x)) ≤ m(C1 + C2), that is T (s(x)) is bounded by a
constant depending only on F . One more application of Lemma 2 shows
that the same is true about α = s(w).

Case 2. R is a Fuchsian field of genus 0. In this case it is enough to find
a bound for T (α) where α is an algebraic solution of a Riccati differential
equation

dα

dz
= a2α

2 + a1α+ a0, ai ∈ K.

First we consider the case when a2 = 0. Poles of a solution may occur only
at the points where a1 or a0 has a pole. If z0 is a pole of α of order n, greater
then the order of pole of a0, then a1 has at z0 a simple pole with residue n.
Thus the total number of poles of α, counting multiplicity is bounded from
above by a constant depending only on a1 and a0.

Now we assume that a2 6= 0. The substitution

α =
1

a2
u− a1

2a2
− 1

2a2
2

da

dz
(17)

reduces the equation to the standard form form

u′ = u2 + a
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with some a ∈ K. Now u may have poles which are not poles of a (they are
called movable poles). The residus of u at all movable poles are equal to −1.
But the total sum of residus of u(z)dz is equal to 0. Thus to estimate the
number of movable poles it is enough to find a bound of residus of u at poles
of a. Let z0 be a pole of u and a also has a pole at z0. If a has a simple pole
at z0 then the residue of u at z0 is equal to 1. If a has a multiple pole at z0

then its multiplicity has to be even, so (assuming that z0 is not a ramification
point of a and z0 6=∞)

a(z) =
∞∑

n=−2m

bn(z − z0)n.

The order of the pole of u at z0 should be equal to m, and we substitute the
series with indeterminate coefficients

u(z) =
∞∑

n=−m
cn(z − z0)n

into the equation. We obtain:

∞∑
n=−m−1

(n+ 1)cn+1(z − z0)n =

( ∞∑
n=−m

cn(z − z0)n
)2

+
∞∑

n=−2m

bn(z − z0)n.

From this equation we see that there are two possible choices for c−m and
once c−m is chosen, the coefficients c−m+1, . . . , c−1 are determined in a unique
way. Thus the residue c−1 has an estimate in terms of a.

If z0 is a ramification point of a, let z − z0 = ζk, where ζ is a local
parameter on the Riemann surface of a. Then we can rewrite the equation
in terms of ζ and v(ζ) = u(z0 + ζk) that is

dv

dζ
= kζk−1(v2 + b),

where b(ζ) = a(z0 + ζk), then make again a change of variable similar to
(17) to obtain an equation in the standard form and reduce the problem to
the case we just considered. The case z0 = ∞ is treated similarly with the
substitution z = ζ−k so that ζ is a local parameter at ∞. This finishes the
proof in Case 2.
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Case 3. R is a Poincaré field of genus 1. We have to estimate the number
of poles of an algebraic solution u of

(u′)2 = a(u− e1)(u− e2)(u− e3).

The general solution of this equation is given by

u = ℘ ◦A,

where ℘ is the Weierstrass elliptic function and A is an Abelian integral

A(z) =
1

2

∫ √
a(z)dz.

Algebraic solutions u are possible if and only if A is an integral of the first

kind (that is
√
a(z)dz is a holomorphic differential). This implies that

|a(z)| = O(|z|−2−ε), for some ε > 0. (18)

Thus, assuming that the Riemann surface S of u has k sheets, we have∫
S

|u′|2
(1 + |u|2)2

dm ≤
∫
S
|a| |(u− e1)(u− e2)(u− e3)|

(1 + |u|2)2
dm ≤ kC,

where C depends on a and ei, and dm stands for the two-dimensional Lebesgue
measure pulled back from C to S. The left side of the above formula is the
spherical area of the image of S under u, which is equal to π times the total
number of poles of u. This implies a bound for T (u) depending only on a.

Case 4. R is a Clairaut field of genus ≥ 1. Then there is an element x
in the field R, transcendental over K with Dx = 0. We have an irreducible
polynomial relation Q(w, x) = 0. So for every differential point p with p(w) =
α we have Q(α, c) = 0, where c ∈ C, and this gives the desired estimate for
T (α) via Lemma 2.

The author thanks A. A. Goldberg and A. Z. Mokhonko for useful dis-
cussion, and the referee for his or her valuable comments on the paper.
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