
Determinants

1. Permutations. Suppose that (j1, j2, . . . , jn) is a permutation of (1, 2, . . . , n),
that is each jk is one of the integers between 1 and n, and every such inte-
ger occurs exactly once. Every permutation can be obtained starting from
(1, 2, . . . , n) by consequtive interchanges of pairs of numbers. Such inter-
change of two numbers is called a transposition. For example, to obtain
(5, 3, 2, 4, 1) we start with (1, 2, 3, 4, 5), and then

• interchange 1 and 5 to obtain (5, 2, 3, 4, 1), and then

• interchange 2 and 3 to obtain (5, 3, 2, 4, 1).

The number of required transpositions to obtain a given permutation may
depend on the way we do it, but the parity of this number depends only on
this given permutation. Thus a permutation is called even if an even number
of transpositions is required, and odd otherwise. For example,

• the identity permutation (1, 2, . . . , n) is even (it is obtained using 0
transpositions),

• every transposition itself is odd,

• (5, 3, 2, 4, 1) is even (because we obtained it above with two transposi-
tions).

Here is the complete list of even permutations on 3 elements: (1, 2, 3), (2, 3, 1), (3, 1, 2).
The rest are odd.

The total number of permutations of n elements is n! = 1 · 2 · 3 · . . . · n,
exactly half of them are even and the rest are odd.

2. Definition of a determinant. To each square matrix A corresponds a
number, called determinant of A, and denoted by |A| or detA. For an n× n

matrix A = (aij) we define

detA =
∑

(j1,..., jn)

±a1j1a2j2 . . . anjn ,

where the summation is over all permutations (j1, . . . , jn) of (1, 2, . . . , n), and
the + sign is chosen for each even permutation, and the − sign for each odd
permutation. For example,
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if n = 1, then detA = a11,
if n = 2, then detA = a11a22 − a12a21,
if n = 3, then detA =

a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33.

Thus there are n! summands in the definitiuon of determinant of a n× n

matrix. Fortunately there are simpler ways to evaluate determinants then
applying the definition directly.

3. Why do we need them? There are two main uses of determinants.

a) A matrix A is singular if and only if detA = 0. Thus we have an analytic
criterion for this important property of a matrix.

b) The volume of the parallelepiped generated by n vectors x1, . . . ,xn in
Rn is equal to |detA|, where A = [x1, . . . ,xn] is the matrix, whose columns
are these vectors. (It should be clear what does it mean a “parallelogram,
generated by two vectors in R2”, and a “parallelepiped, generated by three
vectors in R3”. The general definition, not appealing to geometric intuition
and thus applicable in any dimension, is “the set of all linear combinations
∑

cjxj, with 0 ≤ cj ≤ 1.)

4. Properties of determinants.
(i) detAB = detA detB.

(ii) detA = detAt,
(iii) if two rows are interchanged, the determinant changes sign,
(iv) Determinant is a linear function with respect to each row. This means
precisely the following. Suppose that we have 3 matrices A = (aij), B = (bij)
and C = (cij), and a number k, such that for all i 6= k we have aij = bij =
cij , 1 ≤ j ≤ n, and akj = αbkj + βckj, 1 ≤ j ≤ n. Then

detA = α detB + β detC.

In particular, it follows from (iv) and (iii) that:
(v) If a row is multiplied by a number, the determinant is multiplied by the
same number, and
(vi) if a multiple of a row is added to another row, the determinant does not
change.
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It follows from (ii) that operations on columns similar to (iii), (v), (vi)
have similar effect to the row operations.

One can compute determinants using (iii), (v), (vi) or similar properties
of column operations. For example
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(If one arrives in the end to something else than the identity matrix, the
determinant is zero.) One derives from (v) that if some row consists entirely
of zeros, then the determinant is zero. From (iii) follows that if two rows are
equal, then determinant is zero. Moreover, if two rows are proportional, then
determinant is zero. Using (ii) one obtains similar properties of columns.

5. Row and column expansions. Suppose that A is a n×n matrix. If we
remove some n −m rows and n −m columns, where m < n, what remains
is a new matrix of smaller size m × m. Determinants of such matrices are
called minors of order m of A.

The following special case is important. Take an element aij and remove
the i-th row and j-th column from A. The minor we obtain is called the
minor of aij and denoted by Mij . (It is the determinant of some matrix of
size (n− 1)× (n− 1).) Now the cofactor of aij is defined as (−1)i+jMij. The
following row expansion and column expansion formulas hold:

detA =
n
∑

j=1

(−1)i+jaijMij for every i = 1, . . . , n,

and

detA =
n
∑

i=1

(−1)i+jaijMij for every j = 1, . . . , n.

Your book has plenty of examples illustrating these formulas. They are
convenient to use for evaluating determinants of matrices which have many
zeros in some row or in some column. For a generic matrix the method based
on row operations is faster.

6. More applications of determinants. Determinants permit to write
simple explicit formulas for solutions of the problems we considered before
in this course. We already mentioned the criterion of singularity detA = 0.
Here is more:
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a) The inverse B of a non-singular matrix A is given by

bij =
1

|A|
(−1)i+jMji.

Notice that the indices of the minor are in the opposite order! In words:
to compute the inverse, we first replace each element of a matrix A by its
cofactor, then transpose the result, and then divide it by detA. We can
divide by detA exactly because A is non-singular.

b) Solution of a system of linear equations

Ax = b

with a non-singular matrix A. We know that in this case a solution exists and
it is unique. For j = 1, . . . , n, let Aj be the matrix obtained by replacing the
j-th column of A with the column b, that is with the RHS of the equation.
Then the coordinates of the solution vector x are given by

xj =
detAj

detA
.

Again, these formulas have sense, because we assume A to be non-singular,
so detA 6= 0.

Explicit formulas in a) and b) are rarely used in numerical computation
because there are much better algorithms, for example, the row operations.
Still we will see that in many cases it is important to have an explicit formula
for the solution of a problem.
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