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Abstract

We discuss the so-called secant conjecture in real algebraic geome-

try, and show that it follows from another interesting conjecture, about

disconjugacy of vector spaces of real polynomials in one variable.
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Let V be a real vector space of dimension n whose elements are real
functions on an interval [a, b]. The space V is called disconjugate if one of
the following equivalent conditions is satisfied:

a) Every f ∈ V \{0} has at most n − 1 zeros, or

b) For every n distinct points z1, . . . , zn on [a, b] and every basis f1, . . . , fn

of V we have det(fi(xj)) 6= 0.

One can replace “every basis” by “some basis” in b) and obtain an equiv-
alent condition.

If V is disconjugate then the determinant in b) has constant sign which
depends only on the ordering of xj and on the choice of the basis.

A space of real functions on an open interval is called disconjugate if it is
disconjugate on every closed subinterval.

We are only interested here in spaces V consisting of polynomials.
Suppose that a positive integer d is given, and V consists of polynomials

of degree a most d. Then every basis f1, . . . , fn of V defines a real rational
curve RP1 → RPn−1 of degree d. Indeed, we can replace every fj(x) by a

∗Supported by NSF grant DMS-1361836.

1



homogeneous polynomial f∗

j (x0, x1) of two variables of degree d, such that

fj(x) = f∗

j (1, x), and then f∗

1 , . . . , f∗

n define a map f : RP1 → RPn−1 (if
polynomials have a common root, divide it out).

Then the geometric interpretation of disconjugacy is:

c) The curve f constructed from a basis in V is convex, that is intersects
every hyperplane at most n − 1 times.

For every basis f1, . . . , fn in V we can consider its Wronski determinant
W = W (f1, . . . , fn). Changing the basis results in multiplication of W by a
non-zero constant, so the roots of W only depend on V .

Conjecture 1. Suppose that all roots of W are real. Then V is disconjugate

on every interval that does not contain these roots.

This is known for n = 2 with arbitrary d (see below), and for n = 3, d ≤ 5
by direct verification with a computer.

This conjecture arises in real enumerative geometry (Schubert calculus),
and we explain the connection. The problem of enumerative geometry we
are interested in is the following:

Let m ≥ 2 and p ≥ 2 be given integers. Suppose that mp linear subspaces

of dimension p in general position in Cm+p are given. How many linear

subspaces of dimension m intersect all of them?

The answer was obtained by Schubert in 1886 and it is

d(m, p) =
1!2! . . . (p − 1)!(mp)!

m!(m + 1)! . . . (m + p − 1)!
.

Now suppose that all those given subspaces are real. Does it follow that all
p-subspaces that intersect all of them are real? The answer is negative, and
we are interested in finding a geometric condition on the given p-spaces that
ensure that all d(m, p) m-subspaces that intersect all of them are real.

One such condition was proposed by B. and M. Shapiro. Let F (x) =
(1, x, . . . , xd), d = m + p − 1 be a rational normal curve, a. k. a. mo-
ment curve. Suppose that the given p-spaces are osculating F at some real
points F (x). This means that subspaces Xj are spanned by the (row)-vectors
F (xj), F

′(xj), . . . , F
(p−1)(xj) for some real xj, 1 ≤ j ≤ mp. Then all m-

subspaces that intersect all Xj are real.
This was conjectured by B. and M. Shapiro and proved by E. Mukhin,
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V. Tarasov and A. Varchenko (MTV) [6]. Earlier it was known for n = 2 [1],
and in [2] a simplified elementary proof for the case n = 2 was given.

We are interested in the following generalization of this result.

Secant Conjecture. Suppose that each of the mp subspaces Xj, 1 ≤ j ≤ mp
is spanned by p distinct real points F (xj,k), 0 ≤ k ≤ p − 1, and that these

sets of points are separated, that is xj,k ∈ Ij, where Ij ⊂ RP1 are disjoint

intervals. Then all m-subspaces which intersect all Xj are real.

This is known when p = 2, [3] and has been tested on a computer for
p = 3 and small m, [5, 4]. The special case when the groups {xj,k}

p−1
k=0 form

arithmetic progressions, xj,k = xj,0 + kh has been established [7].
Next we show how the Secant Conjecture follows from Conjecture 1 and

the results of MTV.
Let us represent an m-subspace Y that intersects all subspaces Xj as the

zero set of p linear forms, and use the coefficients of these forms as coefficients
of p polynomials f0, . . . , fp−1. Then the condition that Y intersects some Xj is
equivalent to linear dependence of the p vectors fi(xj,m)p−1

m=0, i = 0, . . . , p−1.
That is

det (fi(xj,m))p−1
i,m=0 = 0.

These equations for j = 1, . . . ,mp define the subspaces Y , and we have to
prove that all solutions are real.

Let Ij be the intervals with disjoint closures which contain the xj,k. We
may assume without loss of generality that ∞ /∈ Ij. We place on each Ij

a point yj , and consider the d(m, p) real rational curves R → RPp with
inflection points at yj. These curves exist by the MTV theorem, and they
depend continuously on the yj.

Let f = (f0 . . . , fp−1) be one of these curves. Fix k ∈ {1, . . . ,mp}. For all
j 6= k, fix all yj ∈ Ij . When yk moves on Ik from the left end to the right end,
the determinant det(fi(xk,m))p−1

i,m=0 must change sign. So this determinant is
0 for some position of yk on Ik.

Then it follows by a well-known topological argument that one can choose
all yj ∈ Ij in such a way that det(fi(xj,m)) = 0 for all j.

Thus we have constructed d(m, p) real solutions of the secant problem.
As the total number of solutions is also d(m, p), for generic data, we obtain
the result.

Proof of Conjecture 1 for n = 2. We have two real polynomials f1 and
f2, such that f ′

1f2 − f1f
′

2 has only real zeros. This means that the rational
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function F = f1/f2 is real and all its critical points are real. Let I ⊂ R be
a closed interval without critical points. Then f is a local homeomorphism
on I, so F (I + iǫ) belongs to one of the half-planes C\R, for all sufficiently
small ǫ > 0. Suppose without loss of generality that it belongs to the upper
half-plane H. Let D be the component of F−1(H) that contains F (I + iǫ).
Then D is a region in H with piecewise analytic boundary, and I ⊂ ∂D. The
map F : D → H is a covering because it is proper and has no critical points.
As H is simply connected, D must be simply connected and F : D → H
must be a conformal homeomorphism. Then F−1 : H → D is a conformal
homeomorphism. As ∂D is locally connected, this homeomorphism extends
to F−1 : H → D. This last map must be injective because this is a left inverse
of a function. Thus F−1 : H → D is a homeomorphism. Then F : D → H
must be also a homeomorphism, in particular F is injective on I.

This implies that the linear span of f1, f2 is disconjugate.
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