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Abstract. We single out some problems of Schubert calculus of subspaces of
codimension 2 that have the property that all their solutions are real whenever
the data are real. Our arguments explore the connection between subspaces
of codimension 2 and rational functions of one variable.

1. Introduction

Let {Wj}qj=1 be a finite collection of projective subspaces in general position in

the complex projective space Pd, aj = dimWj , and

1 ≤ aj ≤ d− 1,

q∑
j=1

aj = 2d− 2.(1)

We consider the following

Problem 1. Enumerate subspaces X ⊂ Pd of codimension 2 which intersect each
Wj non-transversally, that is

dimX ∩Wj ≥ aj − 1 for every j ∈ [1, q].(2)

If the given subspaces Wj are in general position then the number of such complex
subspaces X is finite and can be obtained by using Pieri’s formula from Schubert
calculus [3, Ch. I, sect. 5].

This number turns out to be the Kostka number corresponding to the shape
2 × (d − 1) whose definition we recall. Let a = (a1, . . . , aq). Consider the Young
diagrams of the shape 2× (d−1). They consist of two rows of length d−1. A semi-
standard Young tableau SSYT of shape 2× (d− 1) is a filling of such a diagram by
positive integers, such that an integer k appears ak times, the entries are strictly in-
creasing in the columns and non-decreasing in the rows. The corresponding Kostka
number Ka is the number of such SSYT. Schubert calculus interpretation of these
numbers shows that Ka does not change if we permute the coordinates of a. For a
purely combinatorial proof of this see [5, Cor. 1.2.9] or [10, Theorem 7.10.2].

In this paper we treat Problem 1 over the field of real numbers. A subspace
X ⊂ Pd is called real if it can be defined by equations with real coefficients, or,
equivalently, if X is generated by a set of real points. It follows from a general
result of Sottile [7] that there exist configurations of real subspaces Wj such that
all solutions X of Problem 1 are real. The question is to find an explicit condition
on Wj which would imply that all solutions are real.
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The following condition was proposed by B. and M. Shapiro (see [8, 9]). Let
E : P1 → Pd denote the rational normal curve; in homogeneous coordinates E(z) =
(1 : z : . . . : zd). The B. and M. Shapiro conjecture for the case of subspaces of
codimension 2 says that if all Wj are osculating E at distinct real points then all
solutions X of Problem 1 are real. This conjecture was proved in [1]. B. and M.
Shapiro made a similar conjecture for enumerative problems involving subspaces of
arbitrary codimension but in this paper we only consider the case of codimension 2.

In this paper we consider an extension of the result in [1] to the case that Wj

are spanned by some finite sets of real points on E.
Let {Aj}qj=1 be a collection of finite sets on the circle RP1 ⊂ P1. We say that

this collection is separated if there exist pairwise disjoint closed arcs Ij ⊂ RP1 such
that Aj ⊂ Ij for 1 ≤ j ≤ q. Our main result is

Theorem 1. Let {Aj}qj=1 be a separated collection of finite sets in RP1, each

set Aj containing aj + 1 points, such that (1) holds, and let Wj be subspaces in Pd

spanned by the sets E(Aj). Then all subspaces X of codimension 2 which satisfy (2)
are real. For a generic configuration of Aj there are exactly Ka such subspaces X.

In general, the condition that Aj are separated cannot be removed. Let us
consider several special cases.

1. Let q = 2, a1 = a2 = d − 1. Then the problem always has one solution, this
solution is real, and the condition that Aj are separated is redundant.

2. Let us consider the limiting situation when all points in each Aj collide. Here
aj = cardAj − 1 are arbitrary integers satisfying (1). Then Wj are subspaces
osculating E at some real points; this case was considered in [1, 2]. We will show
that this situation is generic enough and the number of solutions is exactly Ka, for
any choice of the real points (Theorem 3 below). If a = (1, . . . , 1) then Ka is the
Catalan number

K(1,... ,1) =
1

d

(
2d− 2

d− 1

)
.(3)

3. Now we consider the case that a1 ∈ [1, d− 1] is arbitrary and all the rest of aj
are equal to 1. The Kostka number in this case is

K(a1,1,... ,1) =
a1 + 1

d

(
2d− 2− a1

d− 1

)
.(4)

In the case that the two points of each Aj , j ≥ 2 collide, Problem 1 is equivalent
to the following problem of enumeration of flags.

Consider flags F = (F1, F2) in Pd, where

F2 ⊂ F1 and codimFi = i, i = 1, 2.

Suppose that A1 = {x0, . . . , xa1} ⊂ RP1 and Aj = {y(2)
j }, where the superscript

2 indicates that each point yj is taken with multiplicity 2, j = 2, . . . , 2d− 2 − a1.
Our condition on the flags F is that F1 contains the points E(xk), 0 ≤ k ≤ a1, and
F2 intersects the tangent lines Wj to E at yj , j = 2, . . . , 2d− 2 − a1. We want to
enumerate such flags F .
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The condition on F1 implies that F1 contains W1, the subspace spanned by
E(xk), 0 ≤ k ≤ a1. If xk are in general position then dimW1 = a1. Now W1 ⊂ F1

and F2 ⊂ F1 imply that

dimW1 ∩ F2 ≥ a1 − 1,(5)

and the remaining conditions on F2 are

dimF2 ∩Wj ≥ aj − 1 = 0, j = 2, . . . , 2d− 2− a1.(6)

In the opposite direction, suppose that F2 satisfies (5) and (6), and define F1 as
the span of F2 and W1. Then codimF1 = 1 and F2 ⊂ F1.

Thus our problem of flag enumeration is equivalent to the problem of enumer-
ation of subspaces F2 of codimension 2 satisfying (5) and (6), which is a special
limiting case of Problem 1. Assuming that the sets Aj are separated, Theorem 1
implies that all solutions are real, and for generic choice of points xi and yj the
number of these solutions is given by (4). This problem of enumeration of flags was
subject to extensive computer experiments [6].

In these experiments the role of the separation condition was discovered: when
it holds all solutions are real, while when it does not hold, many configurations of
points Aj give fewer real solutions than the upper estimate from Schubert calculus.

All authors thank Frank Sottile for stimulating discussions and MSRI for the
opportunity to work together during the semester “Topological methods in real
algebraic geometry” in spring 2004. M. S. and A. V. thank for hospitality MPIM,
Bonn, where the final version fo the paper was written. We also thank Slava
Kharlamov and the referee for their valuable comments.

2. Rational functions

The method of this paper is based on the relation between subspaces of codi-
mension 2 and rational functions of one variable.

Let G = G(d−1, d+1) be the Grassmannian of projective subspaces of dimension
d−2 in Pd. Every such subspaceX can be defined by two equations in homogeneous
coordinates

b0,0z0 + . . .+ b0,dzd = 0,
b1,0z0 + . . .+ b1,dzd = 0.

(7)

We put into correspondence to this system a rational function

f(z) =
b0,0 + b0,1z + . . .+ b0,dz

d

b1,0 + b1,1z + . . .+ b1,dzd
.(8)

Choosing another system of equations of the form (7) that defines the same X
results in replacing f by φ ◦ f , where φ is a rational function of degree 1. We will
call rational functions f1 and f2 equivalent if f1 = φ ◦ f2, degφ = 1. Let D ⊂ G be
the subset that corresponds to reducible rational functions (those whose numerator
and denominator have a non-constant common factor). Then G\D is in bijective
correspondence with equivalence classes of non-constant rational functions of degree
at most d.

A rational function is called real if it maps RP1 into itself. An equivalence class
is called real if it contains a real rational function. Real classes correspond to the
real elements of G.
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Now we translate conditions (2) to the language of rational functions. Let W be
the subspace of dimension a spanned by the points E(zk), 0 ≤ k ≤ a on the rational
normal curve. The condition that X given by (7) intersects W non-transversally
means that

rankBC = 1,(9)

where

B =

(
b0,0 . . . b0,d
b1,0 . . . b1,d

)
,(10)

and C is the matrix whose columns are (1, zk, . . . , z
d
k), 0 ≤ k ≤ a. Equation (9)

says that the two rows of BC are proportional, which is equivalent to

f(z0) = f(z1) = . . . = f(za).(11)

Thus in the case that each Wj is the span of aj + 1 points on the rational nor-
mal curve, Problem 1 is equivalent to the following interpolation-type problem for
rational functions:

Problem 1′. For given subsets Aj ⊂ P1, of cardinality aj + 1, where aj satisfy
(1), enumerate classes of rational functions f of degree d with the property that for
every j, f is constant on Aj .

Thus our Theorem 1 is equivalent to

Theorem 1′ If the sets Aj ⊂ RP1 are separated then all solutions of Problem 1′ are

real. For generic subsets Aj ⊂ RP1 the number of classes of real rational functions
solving Problem 1′ is Ka.

It is not known whether the genericity condition in the second statement of
Theorem 1′ can be removed. It can be removed in the following special case.

Theorem 2 Let A1, . . . , Aq be separated sets on the real line, cardAj = aj + 1 ∈
[2, d], and

q∑
j=1

aj = d− 1.

Then there exists a unique class of polynomials p of degree d, satisfying the condi-
tions that p is constant on Aj for 1 ≤ j ≤ q.

Proof. Let Aj = {zj,0 . . . zj,aj}, where

zj,k < zj,m, for 0 ≤ k < m ≤ aj , 1 ≤ j ≤ q,(12)

and

zj1,k < zj2,m for 1 ≤ j1 < j2 ≤ q and all m, k.(13)

Every polynomial of degree at most d is equivalent to a unique polynomial of the
form

p(z) = zn + . . .+ b1z, where n ≤ d.(14)

Conditions of the theorem mean that

p(zj,k) = p(zj,m), for 0 ≤ k < m ≤ aj , 1 ≤ j ≤ q.(15)
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This is a system of linear equations with respect to coefficients of p, and it is easy
to see that the coefficients of this system are real. Thus the system (15) has unique
solution of the form (14) if and only if it has a unique real solution of this form.

Now suppose that our system (15) has two solutions of the form (14). Subtracting
these solutions we obtain another solution which is a real polynomial p0 of degree
strictly less than d, and

p0(0) = 0.(16)

On the other hand, Rolle’s theorem, (12) and (15) imply that the derivative p′0 has
at least aj zeros on each interval [zj,0, zj,aj ] for 1 ≤ j ≤ q and, as these intervals are

disjoint by (13), the total number of zeros of this derivative is at least
∑

aj = d−1.

So p′0 = 0 and we conclude from (16) that p0 = 0. This proves the theorem. 2

In the limit, when in each group Aj all points collide to one point xj we recover
from Theorem 1′ the main result of [1]: all rational functions whose critical points
are real are equivalent to real rational functions.

In this degenerate case we have an important additional information:

Theorem 3 The number of classes of rational functions of degree d with arbitrarily
prescribed real critical points of given multiplicity is exactly Ka, for any choice of
the real critical points, where a = (a1, . . . , aq) is the vector of multiplicities.

Our proofs of Theorems 1′ and 3 are based on the results in [1, 2] which we recall
in the next section.

3. Proof of Theorems 1′ and 3

It is sometimes convenient to replace RP1 by the unit circle T as in [1]. We
always assume that T is equipped with the counter-clockwise orientation. We
denote by s : P1 → P1 the reflection with respect to T, that is s(z) = 1/z.

We fix d ≥ 2. Let R be the class of all rational functions f such that f(T) ⊂ T,
all critical points of f are simple and belong to T. We equip R with the following
topology (see [2]): a sequence (fk) converges to f if there exists a finite set S ⊂ P1

such that fk → f uniformly on compact subsets of P1\S.
First we recall a parametrization of the class R. Let f be a function of the

class R, and v0 a critical point of f . The full preimage Γ = f−1(T) defines a cell
decomposition of P1. We call the pair γ = (Γ, v0) the net of f with respect to v0.

One can describe all objects which can occur in this way. Let Γ be a cell decom-
position of P1 with the following properties:

(i) closure of each cell is homeomorphic to a closed ball of corresponding di-
mension;

(ii) Γ is symmetric with respect to T, that is the reflection s maps each cell of
Γ onto a cell of Γ;

(iii) all 0-cells belong to the unit circle T and there are 2d− 2 of them;
(iv) 1-skeleton of Γ contains T.

As usual we call 0-, 1- and 2-cells vertices, edges and faces. The edges that do
not belong to T will be called interior edges. A net is a pair γ = (Γ, v0) where Γ is
a cell decomposition of P1 with the properties (i)-(iv) and v0 is a vertex of Γ.
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Two nets (Γ, v0) and (Γ′, v′0) are called equivalent if there exists a homeomor-
phism φ of P1 preserving the orientations of both P1 and T, commuting with the
reflection s and having the properties φ(Γ) = Γ′ and φ(v0) = v′0.

One of the results of [1] is the following: Let f1 and f2 be two rational functions
in R with the same critical points, and v0 one of these common critical points. If
the nets of f1 and f2 with respect to v0 are equivalent then f1 and f2 are equivalent.

The main technical result of [1] can be stated as follows: For every net γ whose
vertex set is V , and for every injective map c : V → T preserving the cyclic order
induced by the orientation, there exists a unique class C of rational functions in
R whose critical points are c(V ) and whose net with respect to c(v0) is equivalent
to γ.

We will say somewhat informally that functions of this class C have prescribed
net and prescribed critical points.

Functions f ∈ R with a prescribed net and prescribed critical points can be
normalized in the following way. Choose two additional vertices v1 and v−1 and
three distinct points w−1, w0, w1 on T. Then the normalization condition is

f(c(vi)) = wi, i = −1, 0, 1.(17)

There exists a unique normalized function f ∈ R with a prescribed net and pre-
scribed critical points. Another result from [1] says that for each fixed net, this
normalized function depends continuously on the critical points, or more precisely,
on the map c above.

Now we can prove Theorem 1′. Suppose that the separated sets Aj ⊂ T satis-
fying (1) are given. Let Ij ⊂ T be disjoint arcs containing Aj . We list each Aj
as (zj,0, zj,1, . . . , zj,aj) where the order within Aj is consistent with the counter-
clockwise orientation of T. For any two distinct points r and s in T, we denote by
[r, s] the closed arc of T which is traced from r to s counter-clockwise.

Choose additional points

xj,k ∈ [zj,k, zj,k+1], 0 ≤ k ≤ aj − 1, 1 ≤ j ≤ q.(18)

According to (1), the total number of these points xj,k is 2d − 2. So we can use
these points as vertices of a net. Let us use

v0 = x1,0

in the definition of this net. This choice is arbitrary, any other point among xj,k
can be taken as v0.

We consider the nets satisfying the following additional condition:

there are no interior edges connecting two vertices on the same Ij .(19)

Lemma 1 Suppose that a net γ satisfies (19). Let all xj,k, except one, x = xj0,k0

be fixed arbitrarily, so that conditions (18) are satisfied. For fixed wi ∈ T, j = 0,±1,
let fx be the function of the class R with the net γ and critical points xj,k, normalized
as in (17). Denote I = [zj0,k0 , zj0,k0+1]. Then there exist a continuous branch of
arg fx(z), for (x, z) ∈ I × I, such that the function

ψ(x) = arg fx(zj0,k0)− arg fx(zj0,k0+1)

changes sign as x runs over I.
Proof. To simplify our notation we put r = zj0,k0 , s = zj0,k0+1, so that I = [r, s].

Let ` be the interior edge of γ that lies in the unit disc and has x as an endpoint.
Let v be another endpoint of this edge. We note that neither the assumptions nor
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the conclusions of the lemma depend on the choice of the normalization. So we may
assume that v is one of the distinguished vertices, say v = v1 in (17) and choose
w1 = fx(v) = −1. Let D1 and D2 be two faces of the net γ in the unit disc which
have ` as the common part of their boundaries. As the boundary of every face is
mapped by fx bijectively onto T, and the vertex v is disjoint from I because of (19)
we conclude that fx(z) 6= −1 for (x, z) ∈ I × I. Thus arg fx(z) can be defined as a
continuous function for (x, z) ∈ I×I, with values in (−π, π). Now, z 7→ arg fx(z) is
strictly monotone in the opposite directions on the arcs [r, x] and [x, s]: it is strictly
increasing on one of these arcs and strictly decreasing on another one. This follows
from the fact that one of the closed faces D1 or D2 is mapped homeomorphically
onto the closed unit disc and another onto the closed exterior of the unit disc, while
the arcs [r, x] and [x, s] are parts of the boundaries of D1 and D2.

We conclude that arg fx(r)− arg fx(s) changes sign as x runs from r to s, which
proves the lemma. 2

Lemma 2 If γ is a net satisfying (19) then there exists a choice of critical points
xj,k such that every function f ∈ R with this net and with these critical points
satisfies

f(zj,0) = . . . = f(zj,aj) for every j ∈ [1, q].(20)

Proof. Let x be the vector with coordinates (xj,k). The set of x satisfying (18)
is a closed cube Q. According to Lemma 1, the continuous functions ψj,k(x) =
arg fx(zj,k)−arg fx(zj,k+1) with appropriate choices of branches of arguments take
values of opposite signs on the opposite facets of Q. It follows from a Corollary of
Brouwer’s Theorem [4, Ch. IV, 1D] that all these functions ψj,k have a common
zero in the interior of Q. 2

So, for each net γ satisfying (19), Lemma 2 gives at least one function f ∈ R
that satisfies (20). Functions with different nets cannot be equivalent. The crucial
fact is

Lemma 3 For each choice of the separated sets Aj = {zj,k} with cardAj = aj + 1
and vertices xj,k as in (18) there are exactly Ka nets with vertices {xj,k} and
v0 = x1,0, satisfying (19).

Proof. We describe two injective maps: one from the set of nets to the set of
SSYT of shape 2× (n−1) (part A below) and another one in the opposite direction
(part B).

We consider the real line instead of the unit circle, and suppose that v0 =
x1,0 is the leftmost vertex. We also assume for convenience that the intervals are
enumerated in such a way that i < j implies x < y for all x ∈ Ii and y ∈ Ij , and
the vertices in each interval are enumerated from left to right.

Part A. We construct an SSYT corresponding to a given net. To each vertex of
the net we assign one entry in SSYT. These entries are defined inductively: for
j ≥ 1 and n ≥ 0, suppose that the entries corresponding to xi,k for i < j, or i = j
and k < n are already placed in the tableau. The entry corresponding to xj,n is
equal to j. It is placed in the first row if the edge from xj,n goes forward (to some
xj′,n′ > xj,n) and in the second row if the edge from xj,n goes backward. The new
entry j is placed to the leftmost place in its row. It is easy to see that in this way
we obtain an SSYT for each net satisfying (19).
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Part B. In the opposite direction, we construct inductively the net corresponding
to a given SSYT of shape 2× (d− 1). On the n-th step of the construction we deal
with a tableau of shape 2 × (d − n) filled by positive integers such that the rows
are non-decreasing and columns are strictly increasing. The only difference from
SSYT is that the integers in the tableau are not necessarily consecutive; slightly
abusing terminology we will call these tableaux SSYT as well. Assuming that such
an SSYT is given, let k be the first (leftmost) entry in its second row. We find the
rightmost entry m in the first row that is strictly less than k and draw an edge
between the leftmost free vertex in Ik and the rightmost free vertex of Im. Then
we delete the first entry from the second row and the above defined entry from
the first row, and shift the left part of the first row to the right to form a tableau
of shape 2 × (d − n − 1). Evidently, the obtained tableau is an SSYT, so we can
proceed until it becomes empty.

To complete Part B, it remains to prove that the edge added on the n-th step
does not intersect the edges added on the previous steps.

Let us show first that on each step all the vertices lying between the endpoints of
the added edge are not free. Indeed, suppose that there is a free vertex v between
the endpoints. We use the notation from the description of the n-th step above. By
assumption, the vertex v belongs to some Ip with m < p < k, since the new edge
joins the leftmost free vertex in Ik to the rightmost free vertex in Im. Since the
vertex v in Ip is free there should be an entry p somewhere in the current SSYT.
It cannot be in the second row since k > p is the leftmost entry of the second row.
It cannot be in the first row since m < p is the rightmost entry of those which are
strictly less than k.

Now we can complete the proof. If a new edge intersects an old one, then one
of the vertices of the new edge was a free vertex between the endpoints of the old
edge on the step when this old edge was added. This completes the proof of the
part B. 2

Now we can complete the proof of Theorem 1′. For given sets Aj in general
position, Schubert calculus gives at most Ka classes of rational functions solving
Problem 1′. On the other hand, Lemmas 2 and 3 give at least Ka real classes of
such functions. Thus all classes are real. Passing to the limit, we obtain that for
all separated sets Aj , all solutions of Problem 1′ are real. �

Proof of Theorem 3. Let R′ be the subset of the closure of R which consists of
functions of degree exactly d. The nets of functions f ∈ R′ have similar properties
to those of f ∈ R, except that the vertex degrees can be arbitrary numbers between
4 and 2d. Such nets were called degenerate in [2]. In that paper, the following result
was proved: Let xa1

1 , . . . , x
aq
q be a divisor on the real line, where a = (a1, . . . , aq)

satisfies (1) and γ be a net whose vertices enumerated in the increasing order have
degrees 2aj + 2. Then there exists a real rational function of degree d with critical
points of multiplicity ak at the points xk.

It is easy to see that the number of these degenerate nets γ is the same as the
number of non-degenerate nets satisfying (19), so according to Lemma 3, this num-
ber is Ka. Hence the number of classes of real functions satisfying the conditions
of Theorem 3 is at least Ka and this proves the theorem. �
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