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Abstract

We show that for a polynomial p(z) = zd + . . . the length of the
level set E(p) := {z : |p(z)| = 1} is at most 9.173 d, which improves
an earlier estimate due to P. Borwein. For d = 2 we show that the
extremal level set is the Bernoullis’ Lemniscate. One ingredient of
our proofs is the fact that for an extremal polynomial the set E(p) is
connected.

For a monic polynomial p of degree d we write E(p) := {z : |p(z)| = 1}.
A conjecture of Erdős, Herzog and Piranian [4], repeated by Erdős in [5] and
elsewhere, is that the length |E(p)| is maximal when p(z) := zd + 1. It is
easy to see that in this conjectured extremal case |E(p)| = 2d+O(1) when
d→∞.

The first upper estimate |E(p)| ≤ 74d2 is due to Pommerenke [8]. Re-
cently P. Borwein [2] gave an estimate which is linear in d, namely

|E(p)| ≤ 8πed ≈ 68.32d.

Here we improve Borwein’s result.
Let α0 be the least upper bound of perimeters of the convex hulls of

compact connected sets of logarithmic capacity 1. The precise value of α0

is not known, but Pommerenke [10] proved the estimate α0 < 9.173. The
conjectured value is α0 = 33/222/3 ≈ 8.24.

Theorem 1 For monic polynomials p of degree d |E(p)| ≤ α0d < 9.173d.

A similar problem for rational functions turns out to be much easier,
and can be solved completely by means of Lemma 1 below.

∗Supported by EPSRC grant GR/L 35546 at Imperial College and by NSF grant DMS-
9800084

1



Theorem 2 Let f be a rational function of degree d. Then the spherical
length of the preimage under f of any circle C is at most d times the length
of a great circle.

This is best possible as the example f(z) = zd and C = R shows.
Remarks. Borwein notices that his method would give the estimate

4πd ≈ 12.57d if one knew one of the following facts: a) the precise estimate
of the size of the exceptional set in Cartan’s Lemma (Lemma 3 below) or
b) the fact that for extremal polynomials the set E(p) is connected. The
second fact turns out to be correct (this is our Lemma 3), and in addition we
can improve from 4π to 9.173 by using more precise arguments than those
of Borwein.

The main property of the level sets E(p) is the following

Lemma 1 For every rational function f of degree d the f -preimage of any
line or circle has no more than 2d intersections with any line or circle C,
except finitely many C’s.

Proof. The group of fractional-linear transformations acts transitively on
the set of all circles on the Riemann sphere, and a composition of a rational
function with a fractional-linear transformation is a rational function of the
same degree.

Thus it is enough to prove that for a rational function f of degree d the
set F := {z : f(z) ∈ R} has at most 2d points of intersection with the real
line R, unless R ⊂ F . Let z0 be such a point of intersection. Then z0 is
a zero of the rational function f1(z) = f(z) − f(z). But f1 evidently has
degree at most 2d and thus cannot have more than 2d zeros, unless f1 ≡ 0.

�

The length of sets described in Lemma 1 can be estimated using the
following lemma, in which we denote by πx and πy the orthogonal projections
onto a pair of perpendicular coordinate axes.

Lemma 2 If an analytic curve Γ intersects each vertical and horizontal line
at most n times than |Γ| ≤ n(|πx(Γ)|+ |πy(Γ)|).

Proof. We break the curve Γ into finitely many pieces lj such that every
lj intersects each vertical or horizontal line at most once. Then we have
|lj | ≤ |πx(lj)|+ |πy(lj)|. We obtain this by approximating lj by broken lines
whose segments are parallel to the coordinate axes. Adding these inequalities
for all pieces and using the fact that both projection maps are at most n-to-1
on Γ we obtain the result. �
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Corollary Every connected subset l of E(p) has the property

|l| ≤ 2d(|πx(l)|+ |πy(l)|) ≤ 4ddiam(l).

Lemma 3 (H. Cartan, see for example [7, p. 19]). For a monic polynomial
p of degree d the set {z : |p(z)| < M} is contained in the union of discs the
sum of whose radii is 2eM1/d.

Pommerenke [9, Satz 3] improved the constant 2e in this lemma to 2.59
but we will not use this result.

Now we can prove the existence of extremal polynomials for our problem.

Lemma 4 The length |E(p)| is a continuous function of the coefficients of
p. For every positive integer d there exists a monic polynomial pd with the
property |E(pd)| ≥ |E(p)| for every monic polynomial p of degree d.

Proof. Every monic polynomial of degree d can be written as

p(z) =
d∏
j=1

(z − zj).

We consider vectors Z = (z1, . . . , zd) in Cd and denote by pZ the monic
polynomial with the zero-set Z.

First we show that |E(p)| → 0 as diamZ → ∞, p = pZ . Let M be
a number such that M > (4e)d. If the diameter of the set Z is greater
than 4Md then we can split Z into two parts, Z = Z1 ∪ Z2 such that
dist(Z1, Z2) > 4M .

Indeed, Let D be the union of closed discs of radii 2M centered at the
points z1, . . . , zd. If D is connected, then diamD ≤ 4Md, contradicting our
assumption. Thus D is disconnected that is D = D1 ∪ D2, where D1 and
D2 are disjoint compact sets, and we set Zi = Z ∩ Di for i = 1, 2, which
proves our assertion. �

Consider two polynomials

pk(z) :=
∏
w∈Zk

(z − w), k = 1, 2; so that p = p1p2.

By Lemma 3 the union L of two sets Lk := {z : |pk(z)| < M−1}, k = 1, 2,
can be covered by discs the sum of whose radii is 4eM−1/d < 1. Thus the
sum of the lengths of the projections of L satisfies

|πx(L)|+ |πy(L)| ≤ 16eM−1/d. (1)
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On the other hand, each component of a set Lk contains a zero of pk and
has diameter less than 2 so that dist(L1, L2) > 4M−4 > 2M, since M > 4e.

Next we show that E(p) ⊂ L1 ∪ L2. Indeed, suppose that z ∈ E(p).
Assume without loss of generality that dist(z, L1) ≤ dist(z, L2). Then
dist(z, L2) > M and thus |p2(z)| > M , so that

|p1(z)| = |p(z)|/|p2(z)| < M−1

and this implies that z ∈ L1.
We conclude that |πx(E(p))|+ |πy(E(p))| ≤ 16eM−1/d, which tends to 0

as M → ∞. Now an application of the Corollary after Lemma 2 concludes
the proof of our assertion that |E(p)| → 0 as diamZ →∞.

Now we show that |E(pZ)| is a continuous function of the vector
Z = (z1, . . . , zd) ∈ Cd. Consider the multivalued algebraic function

q(Z,w) = (d/dw)(p−1(w)).

The coefficients of the algebraic equation defining this function q are poly-
nomials of Z and w, and q(Z,w) 6= 0 in Cd ×C because this is a derivative
of an inverse function. So all branches of q are continuous with respect to
w and Z at every point where these branches are finite (see, for example [6,
Theorem 12.2.1]). Denoting by T the unit circle, we have

|E(p)| =
∫
T
Q(Z,w) |dw|, where Q(Z,w) =

∑
|q(Z,w)|,

and the summation is over all values of the multi-valued function q. To
show that this integral is a continuous function of the parameter Z, we will
verify that the family of functions w 7→

∑
|q(Z,w)|, T→ R has a uniform

integrability property.
Let K be an arc of the unit circle of length δ < π/6. Then this arc is

contained in a disc D(w, r) of radius r = δ/2, centered at the middle point
w of the arc K. By Lemma 3, applied to p−w, the full preimage p−1D(w, r)
can be covered by discs the sum of whose radii is at most 2er1/d. So the sum
of the vertical and horizontal projections of p−1D(w, r) is at most 8er1/d.
Finally by the Corollary after Lemma 2, the length of the part of E(p) which
is mapped to K is at most ε := 16der1/d = 16de(δ/2)1/d. Thus∫

K
Q(Z,w) |dw| < ε, (2)

where ε→ 0 as δ → 0 uniformly with respect to Z.
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Suppose now that Z0 ∈ Cd. Consider the points w1, . . . , wk on the unit
circle T, such that Q(Z0, wj) =∞. Then k ≤ d− 1, because a polynomial p
of degree d can have no more than d−1 critical points. Given that ε > 0 we
choose open arcs Kj so that wj ∈ Kj ⊂ T, 1 ≤ j ≤ k, and (2) is satisfied
with K = ∪jKj whenever Z ∈ Cd. Now we have Q(Z,w) → Q(Z0, w) as
Z → Z0 uniformly with respect to w in T\K, so that∣∣∣∣∫

T
Q(Z,w) |dw| −

∫
T
Q(Z0, w) |dw|

∣∣∣∣ ≤ 3ε,

when Z in Cd is close enough to Z0.
We have proved that Z 7→ |E(pZ)| is a continuous function in Cd and

that |E(pZ)| → 0 as Z →∞. It follows that a maximum of |E(p)| exists.
To show that |E(p)| is a continuous function of the coefficients we again

refer to the well-known fact [6, Theorem 12.2.1] that the zeros of a monic
polynomial are continuous functions of its coefficients. �

In what follows we will call extremal any polynomial p which maximises
|E(p)| in the set of all monic polynomials of degree d.

Lemma 5 There exists an extremal polynomial p, such that all critical
points of p are contained in E(p).

Remarks. From this lemma it follows that the polynomial z2 + 1 is
extremal for d = 2. The level set {z : |z2 + 1| = 1} is known as Bernoullis’
Lemniscate (it is also one of Cassini’s ovals) and its length is expressed by
the elliptic integral

23/2
∫ 1

−1

1√
1− x4

dx ≈ 7.416 .

This curve as well as the integral played an important role in the history of
mathematics, see for example [11].

Proof of Lemma 5.
Let p be a polynomial and a a critical value of p, such that a does not lie

on the unit circle T. Let U be an open disc centered at a, such that U does
not contain other critical values. Let Φ : C→ C be a smooth function whose
support is contained in U and such that Φ(a) = 1. If λ ∈ C and λ satisfies
|λ| < ε := (maxU |gradΦ|)−1 then the map φλ : C→ C, φλ(z) = z + λΦ(z),
is a smooth quasiconformal homeomorphism of C. So we have a family of
quasiconformal homeomorphisms, depending analytically on λ for |λ| < ε.
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The composition qλ := φλ ◦ p is a family of quasiregular maps of the
plane into itself. We denote by µf the Beltrami coefficient of a quasiregular
map f , that is µf := fz/fz, where fz := ∂f/∂z and fz := ∂f/∂z. By the
chain rule (see for example [1, p. 9])

µqλ =

(
|p′|
p′

)2

µφλ ◦ p, (3)

so that µqλ depends analytically on λ for |λ| < ε. According to the Existence
and Analytic Dependence on Parameter Theorems for the Beltrami equation
(see, for example [3, Ch. I, theorems 7.4 and 7.6]), there exists a family
of quasiconformal homeomorphisms ψλ : C → C, satisfying the Beltrami
equations

µψλ = µqλ ,

normalized by ψλ = z + o(1), z → ∞, and analytically depending on λ for
|λ| < ε for every fixed z.

It follows that
pλ := qλ ◦ ψ−1λ = φλ ◦ p ◦ ψ−1λ

are entire functions. As they are all d-to-1, they are polynomials of degree d,
and the normalization of ψ implies that these polynomials are monic. These
polynomials pλ may be considered as obtained from p by shifting one critical
value from a to a+λ, while all other critical values remain unchanged. The
functions λ 7→ pλ(z) are continuous (in fact analytic) for every z. Thus the
coefficients of pλ are continuous functions of λ. It follows by Lemma 4 that
|E(pλ)| is a continuous function of λ.

Now we assume that p is an extremal polynomial, and that a critical
value a of p does not belong to the unit circle T. Then we can choose the
disc U in the construction above such that U does not intersect the unit
circle. As φλ is conformal outside U , we conclude from (3) that qλ and thus
ψλ are conformal away from p−1(U). This implies that ψλ is conformal in
the neighborhood of E(p), and we have

|E(pλ)| = |ψλ(E(p))| =
∫
E(p)

∣∣∣∣dψλdz
∣∣∣∣ |dz|.

As φλ depends analytically on λ so does dψλ/dz; thus |dψλ/dz| is a sub-
harmonic function of λ for |λ| < ε for every fixed z. It follows that |E(pλ)|
is subharmonic for |λ| < ε. Because we assumed that p is extremal, this
subharmonic function has a maximum at the point 0, so it is constant.
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Now we consider all critical values a1, . . . , an of p which do not belong
to the unit circle T, and connect each aj with T by a curve γj such that
all these curves are disjoint and do not intersect T, except at one endpoint.
Performing the deformation described above, we move all critical values aj ,
one at a time, along γj to the unit circle, and obtain as a result a monic
polynomial p∗ of degree d, all of whose critical values belong to T. This is
equivalent to the property that all critical points of p∗ belong to E(p∗). We
have |E(p∗)| = |E(p)|, because |E(p)| remains constant as a critical value aj
is moved along γj . Thus p∗ is also extremal. �

Lemma 6 There exists an extremal polynomial p for which the set E(p) is
connected.

Proof. Put D = {z ∈ C : |P (z)| > 1}, and ∆ = {z ∈ C : |z| > 1}. Let
p be an extremal polynomial constructed as in Lemma 5. Then p : D → ∆
is a ramified covering of degree d having exactly one critical point of index
d− 1, namely the point ∞. By the Riemann–Hurwitz Formula D is simply
connected, so E(p) is connected. �

Remarks. By moving those critical values whose moduli are greater than
1 towards infinity, rather than to the unit circle, and using the arguments
from the proof of Lemma 4, one can show that an extremal polynomial
cannot have critical values with absolute value greater than 1. It follows
that in fact for all extremal polynomials p the level sets E(p) are connected.
We will not use this additional information in the proof of Theorem 1.

Lemma 7 (Pommerenke [10, Satz 5]). Let E be a connected compact set
of logarithmic capacity 1. Then the perimeter of the convex hull of E is at
most

π(
√

10− 3
√

2 + 4) < 9.173.

Proof of Theorem 1. Let p be an extremal polynomial with connected
set E(p). Such a p exists by Lemma 6. Applying Lemma 7 we conclude that
the perimeter of the convex hull of E is at most 9.173.

Now the integral-geometric formula [12] for the length of a curve gives

|E| = 1

2

∫ π

0

∫ ∞
−∞

NE(θ, x) dx dθ,

where NE(θ, x) is the number of intersections of E with the line

{z : <(ze−iθ) = x}.
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A connected compact set E intersects exactly those lines which the boundary
of its convex hull intersects. But the boundary of the convex hull intersects
almost every line either 0 or 2 times, while a set E(p) intersects each line at
most 2 deg p times. Thus |E| < 9.173d. This proves our assertion.

Proof of Theorem 2. Following Borwein we use the Poincaré Integral-
Geometric Formula [12]. Assuming that the great circles have length 2π, we
denote by l(E) the spherical length of E, by dx the spherical area element
and by v(E, x) the number of intersections of E with the great circle, one
of whose centers is x. The Poincaré Formula is

l(E) =
1

4

∫
v(E, x) dx.

Now if E(f) is the preimage of a circle under a rational function f of degree
d then by Lemma 1 E(f) intersects every great circle at most 2d times, so
that the spherical length l(E(f)) is at most 2πd. �

We are very grateful to Christian Pommerenke for helpful discussion
and references. We also thank the referee, whose suggestions improved our
original estimate in Theorem 1.
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