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1 Introduction

In this paper we prove sharp covering theorems for nonconstant holomorphic
functions f in the unit disk U. Theorem 1 asserts that if |f ′(0)| ≥ A|f(0)|,
where A is a given number larger than 4, then f covers some annulus of the
form r < |w| < Kr, where K = K(A) is a number depending on A. The
theorem is sharp; extremals are furnished by universal covering maps from
U onto the plane minus a doubly-infinite geometric sequence with ratio K

along a ray through the origin. The covering theorem is proved by solving
a minimum problem for hyperbolic metrics. The crucial step is to prove
that among all domains Ω of the form C\(S × 2πZ), where S is a closed
subset of R which intersects every interval of length logK, the hyperbolic
density λΩ(z) is smallest when S consists of all integer multiples of logK,
and z = (1/2) logK + iπ. A second covering theorem, Theorem 2, gives the
precise value for a “real Landau constant” about covering intervals on the
real axis whe f(0) is real. The covering and minimum problems occupy §2-§7
of the paper. In §8-§11 we study some properties of the function K(A).
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2 Covering theorems

For K > 1, consider the region DK = C∗\{−Kn+1/2 : n ∈ Z}, where C∗ =
C\{0}, and let FK : U → DK be the universal covering of DK by the unit
disc such that FK(0) = 1 and F ′K(0) > 0. Put A(K) = F ′K(0). We shall see
that A(K) is a strictly increasing continuous function on (1,∞), that

lim
K→1+

A(K) = 4, and that lim
K→+∞

A(K) = +∞. (1)

So the inverse function K(A) is defined for 4 < A <∞.

Theorem 1 Let f be a nonconstant holomorphic function in the unit disc
U satisfying |f ′(0)| ≥ A|f(0)| where A > 4. Then the image f(U) contains
an annulus of the form r < |w| < Kr for some r > 0, where K = K(A) was
defined above.

Moreover, f(U) contains a closed annulus r ≤ |w| ≤ Kr for some r > 0,
unless f(z) = cFK(eiαz) for some c ∈ C∗ and α ∈ R.

The function FK shows that the estimate of the “thickness” of the annulus
in this theorem is best possible.

Set F1(z) =

(
1 + z

1− z

)2

. Then F1
′(0) = 4 and F1(U) = C\(−∞, 0] con-

tains no annulus centered at the origin. Thus, there is no theorem like
Theorem 1 when A ≤ 4.

The historical background begins with work of Valiron [31]:

Theorem A For every non-constant entire function f and every number
N > 0, there exists a branch of the inverse f−1 which has an analytic con-
tinuation to a region of the form {w : r < |w| < Nr, |Argw| < N} (on the
Riemann surface of the logw) for some r > 0.

A.J. MacIntyre [25] proved a result of this type about covering of slit annuli.
We are grateful to David Minda for calling this paper to our attention.

A corollary to Theorem A is that there are branches of the inverse f−1

in discs of arbitrarily large radii. A. Bloch [8] extended this corollary to
functions holomorphic in the unit disc:

Theorem B For every holomorphic function f in U there exists a branch
of the inverse f−1 in some disc of radius b|f ′(0)|, where b is an absolute
constant.
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The following corollary of Theorem B is sometimes called Landau’s Theorem:

Theorem C For every holomorphic function f in U, the image f(U) con-
tains a disc of radius `|f ′(0)|, where ` is an absolute constant.

Landau [24] stated extremal problems related to Theorems B and C. To state
the problem corresponding to Theorem C, we define `(f) to be the inradius
of f(U), that is, the least upper bound of radii of discs contained in f(U).
Then the extremal problem is to find

L = inf{`(f) : |f ′(0)| = 1} .

The constant L is called Landau’s constant. The solution of the analogous
extremal problem for Theorem B, denoted B, is called Bloch’s constant.
Conjectures for the precise values of B and L, and for the corresponding
extremal domains, are given in the papers [3] and [28], respectively. Both
conjectures remain open. The best bounds known to us are

.43... =

√
3

4
+ 2 · 10−4 < B ≤ Γ(1/3)Γ(11/12)

Γ(1/4)(1 +
√

3)1/2
= .47 . . . ,

1

2
+ 10−335 < L ≤ Γ(1/3)Γ(5/6)

Γ(1/6)
= .54 . . . .

These inequalities imply that L > B. The upper bounds are the conjec-
tural correct values. The lower bound for B is due to Chen and Gauthier
[11], the lower bound for L to Yanagihara [35].

We consider Theorem 1 to be a theorem of Landau type which also bears
some resemblance to the original result of Valiron. The main point of The-
orem 1 is that we have succeeded in solving the corresponding extremal
problem.

Here is another sharp covering theorem. Its proof is essentially the same
as that of Theorem 1. For f holomorphic in U, define `0(f) to be the least
upper bound of lengths of subintervals of R contained in f(U), and define

L0 = inf{`0(f) : f(0) ∈ R, |f ′(0)| = 1} .

One could call L0 the “real Landau constant.”

Theorem 2 L0 =
4π3

Γ(1/4)4 = .718 . . . .
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Theorem 1 is a consequence of Theorem 3, about hyperbolic metrics,
which will be stated in §4 and proved in §5. The main inequality underlying
Theorem 3 also produces an inequality for distribution functions of hyperbolic
densities on intervals. This is stated as Theorem 4, in §6. The proof of
Theorem 2, along with associated extremal problems for hyperbolic metrics,
is discussed in §7. Our principal tools are Ahlfors’s method of ultrahyperbolic
metrics and Weitsman’s theorem on symmetrization. Some of our proofs are
near neighbors to those found in [9] and [26]. The papers [10] and [30] also
contain some related results.

3 The function A(K)

The domains DK , universal covering maps FK , and numbers A(K) = F ′K(0)
were defined at the beginning of §2. Using a theorem of Hejhal, (Theorem 1
and the remark following its proof in [18]), one can prove that if K0 ∈ (1,∞),
then FK converges to FK0 locally uniformly in U when K → K0. Thus,
A(K) is continuous on (1,∞). Similarly, as K → 1+, FK converges locally

uniformly in U to the conformal map F1(z) =

(
1 + z

1− z

)2

of U onto the plane

minus the negative real axis. Thus,

lim
K→1+

A(K) = F ′1(0) = 4 .

Let GK be the universal cover from U onto the annulus K−1/2 < |w| <
K1/2 with GK(0) = 1, G′K(0) > 0. Then, by the principle of subordination,
A(K) > G′K(0) for K > 1. Now GK = exp((log K)H), where H is the
conformal map of U onto the strip |Re ζ | < 1/2 with H(0) = 0, H ′(0) > 0.
Thus, limK→∞G

′
K(0) =∞ and hence

lim
K→∞

A(K) =∞ .

We will derive the strict monotonicity of A(K) from Theorem 3 in the
next section.

4 Hyperbolic Metrics

Each plane domain D for which C\D contains at least two points has a
hyperbolic metric, that is, a complete conformal Riemannian metric of cur-
vature −4. Such a metric is unique and its length element will be denoted
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by λD(z)|dz|. Thus, for example, λU(z) = 1/(1− |z|2). Whenever we speak
of λD we shall be implicitly assuming that D has a hyperbolic metric. For
z ∈ C\D set λD(z) = +∞. Then λD is defined in all of C.

Let f be holomorphic in U, and consider the region D = f(U). Then

|f ′(0)| ≤ 1

λD(f(0))
(2)

by the invariant form of the Schwarz Lemma, with equality if and only if f
is a universal covering map from U onto D. See, for example, [2] p.13. In
particular, λDK(1) = 1/A(K). Theorem 1 is consequence of

Theorem 3 If D is a region in the plane which contains no annuli of the
form r ≤ |w| ≤ Kr for r > 0, then for w ∈ D,

|w|λD(w) ≥ λDK(1) ,

with equality if and only if D = cDK and w = c for some c ∈ C∗.

Corollary 1 The function K 7→ A(K) = 1/λDK (1) is strictly increasing for
1 < K <∞.

Concerning the equality statement in Theorem 3, note that KnDK = DK ,

from which it follows that λDK(Knζ) = K−nλDK (ζ) for all ζ ∈ C. Thus an
equivalent statement of the equality condition is: Equality holds for a given
D and w if and only if there exists c ∈ C∗ and n ∈ Z such that D = cDK

and w = cKn.
Assuming now that Theorem 3 is true, we shall show that it implies

Theorem 1. Take a function f satisfying the hypotheses of Theorem 1 for
some A > 4. Let K = K(A). If f(0) = 0 then f(U) contains a neighborhood
of the origin, hence an annulus of the form r ≤ |w| ≤ Kr, so that the
conclusion of Theorem 1 is fulfilled. Suppose that |f(0)| > 0, and that f
covers no annulus r ≤ |w| ≤ Kr. Let D = f(U) and w0 = f(0). Then

A|w0| ≤ |f ′(0)| ≤ 1

λD(w0)
≤ |w0|A.

The first inequality is from the hypothesis of Theorem 1, the second
from (2), and the third from Theorem 3, together with the identity A(K) =
1/λDK(1). We conclude that equality holds in all three inequalities. The
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equality statements in (2) and Theorem 3 imply existence of c ∈ C∗ such
that f is a universal covering map of U onto cDK with f(0) = c. This is the
conclusion of Theorem 1. Thus, Theorem 1 is proved, modulo Theorem 3.

The proof of Theorem 3 will be accomplished through several applications
of the Ahlfors–Schwarz Lemma [1], [2]. Recall that if λD is the density of the
hyperbolic metric in a domain D and we put u = log λD, then u satisfies in
D the Liouville equation

∆u = 4e2u . (3)

Let v be a function in D. A C2 function ua defined in some neighborhood
N of a point a ∈ D is called a support function for v at a if ua(a) = v(a),
ua(z) ≤ v(z) for all z ∈ N , and ua is a classical subsolution of (3), that is,
∆ua ≥ 4e2ua in N . We shall call a function v in D ultrahyperbolic in D if
it is upper semicontinuous and has a support function at each point of D.
The Ahlfors–Schwarz Lemma states that every ultrahyperbolic function v in
a domain D satisfies

v ≤ log λD.

Our use of the term “ultrahyperbolic” differs slightly from that in [2],
where “ultrahyperbolic metric” would refer to the Riemannian metric with
the length element ev(z)|dz|, with v as above.

Returning now to our extremal domain DK , let us make a conformal
change of variable w = −eζ and put

L =
1

2
logK .

Then to DK ⊂ Cw corresponds the domain

ΩL = C\S(L) ⊂ Cζ, where S(L) = {(2m+ 1)L+ 2πin : m,n ∈ Z} .

The hyperbolic densities of these two domains are related by the equation

λΩL(ζ) = λDK(−eζ)|eζ|. (4)

From the uniqueness of the hyperbolic metric it follows that λΩL is doubly
periodic with periods 2L and 2πi, and enjoys the symmetry properties

λΩL(ζ) = λΩL(±ζ) .

One expects that λΩL should have monotonicity properties along horizon-
tal and vertical lines. The lemma below confirms this. For fixed y ∈ R define
φ(x) = λΩL(x+ iy), and for fixed x ∈ R define ψ(y) = λΩL(x+ iy).
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Lemma 1 φ(x) is strictly increasing on [0, L] for every y, and ψ(y) is strictly
decreasing on [0, π] for every x.

From symmetry and periodicity properties of λΩL it follows that φ and
ψ are even functions, that φ has period 2L, and that ψ has period 2π. To-
gether with Lemma 1, these show that the minima of logλΩL along horizontal
lines are achieved at x = 0 and the minima along vertical lines at y = π.
Consequently,

inf
C
λΩL = λΩL(πi) .

Proof of Lemma 1. Weitsman [33] proved that for circularly symmetric
domains D, λD(reiθ) is an even function of θ which is nondecreasing for
0 ≤ θ ≤ π. Along with (4), this insures that ψ is nonincreasing on [0, π]. A
slightly different change of variable shows that φ is nondecreasing on [0, L].
The same changes of variables show that the monotonicities, this time strict,
follow also from a theorem of Minda, [26, Theorem 4(ii)], or, in a more general
context, from a polarization theorem of Solynin, [29, Theorem 13].

Here is yet another proof of monotonicity, different from those of Weits-
man and Minda. For fixed L ∈ (0,∞) set u = log λΩL . Define a function u∗

in ΩL as follows: For z = x+ iy ∈ ΩL with 0 ≤ x ≤ L, set

u∗(x+ iy) = max{u(t+ iy) : 0 ≤ t ≤ x} .

Extend u∗ to ΩL by setting u∗(z) = u(z + 2L), u∗(x+ iy) = u∗(−x+ iy).
Then u∗ is continuous on ΩL.

Clearly, u ≤ u∗ in ΩL. We shall apply the Ahlfors–Schwarz Lemma to
prove the opposite inequality. Take a = x0 + iy0 ∈ ΩL with 0 ≤ x0 ≤ L.
There exists x1 ∈ [0, x0] such that u∗(a) = u(x1 + iy0). If x1 = x0 take
ua = u. Then ua(a) = u(a) = u∗(a) and ua(z) = u(z) ≤ u∗(z) for all z, so
that ua is a support function for u∗ at a. If 0 ≤ x1 < x0, set b = x1 + iy0 and
define

ua(z) = u(z + b− a) = u(z + x1 − x0) .

Take δ > 0 so small that the disks |z − a| < δ and |z − b| < δ are disjoint.
Then again ua(a) = u∗(a), while the definition and symmetry properties of
u∗ imply ua ≤ u∗ in |z − a| < δ. Thus, ua is again a support function for
u∗. We’ve shown that u∗ has a support function at each point of ΩL with
0 ≤ x ≤ L. Using symmetry and periodicities, we can construct a support
function at each point of ΩL. Thus, the Ahlfors–Schwarz Lemma implies
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that u ≥ u∗ in ΩL. The opposite inequality was already noted. We deduce
that u = u∗ in ΩL, which implies that the function φ(x) is nondecreasing in
[0, L]. A similar argument shows that ψ(y) is nonincreasing on [0, π].

To prove strict monotonicity, let g = ∂u
∂x

and p(z) = 8eu(z). Differentiation
of the Liouville equation shows that g satisfies in ΩL the Schrödinger equation

∆g = pg

Since φ is nondecreasing on (0, L), we have g ≥ 0 in the strip ΠL =
{z : 0 < Re z < L}. The potential p(z) is positive. If g were zero at a
point z0 ∈ ΠL, the Hopf strong maximum principle applied to the operator
L = ∆− p, see, for example [14], p.35, would imply that g is identically zero
in each compact subdomain of ΠL which contains z0, and hence g would be
identically zero in ΠL. This is impossible, since u(z) → ∞ as z → L. We
conclude that g is strictly positive in ΠL, so that φ(x) is strictly increasing
in [0, L]. In the same way, one proves that ψ is strictly decreasing in [0, π].

2

5 Proof of Theorem 3

Theorem 3 asserts that

λDK (1) ≤ |w|λD(w), w ∈ D, (5)

when D is a domain in the plane which contains no annuli of the form r ≤
|w| ≤ Kr.

Let E ⊂ (−∞, 0] be the set of all numbers −r for which the circle |w| = r
is not contained in D. Let D′ = C\E, and let D∗ be the circular symmetriza-
tion of D. A theorem of Weitsman [34] asserts that λD(w) ≥ λD∗(|w|).
Solynin [29] proved that equality in Weitsman’s theorem is possible only if
D = D∗ and w = |w|. Moreover, D∗ ⊂ D′. From Theorem 7.1 of Heins’s
paper [16] with F = D∗, it follows that λD∗ ≥ λD′ everywhere in D∗, with
equality at some point if and only if D∗ = D′. Thus:

To prove Theorem 3, it suffices to prove (5) when D has the form C\E, with
E a closed subset of (−∞, 0] which, for fixed K, intersects every interval of
the form [−r,−Kr], and to show that equality in (5) is possible only for
D = cDK and w = c, where c ∈ R+.
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To obtain (5) for this special class of D, we shall prove some stronger in-
equalities for the corresponding domains Ω = {ζ ∈ C : −eζ ∈ D}. Let
S = {x ∈ R : −ex ∈ E} = {log r : r ∈ −E}. Then

Ω = C\(S × 2πZ) (6)

where S is a closed subset of R which intersects every closed interval of length
2L = logK. Let us call a set S of this type an L-set and a domain Ω of this
type an L-domain. The domains ΩL of §4 are L-domains. They will furnish
extremals for the problems we study.

For an L-set S and x ∈ R, let d(x) be the distance from x to S. Then
0 ≤ d(x) ≤ L.

Our main inequality for L-domains is embodied in the following lemma.

Lemma 2 For an L-domain Ω and z = x+ iy ∈ Ω,

λΩ(x+ iy) ≥ λΩL (L− d(x) + iy) , (7)

with equality for some z ∈ Ω if and only if Ω is a translation of ΩL.

Proof. For z = x+ iy ∈ Ω, define v(z) = log λΩL (L− d(x) + iy). Then v
is finite and continuous in Ω. Take a = x0 + iy0 ∈ Ω. There are two mutually
exclusive possibilities for x0:

(a) There is a unique point of S closest to x0. Then we put ua(z) = v(z)
for z in a small neighborhood of a, and it is evident that ua is a support
function for v at a.

(b) There are exactly two points of S closest to x0. Then we set

ua(z) = log λΩL (L− d(x0) + z − x0) .

Evidently ua satisfies (3), and ua(a) = v(a). Now notice that

L− d(x) ≥ L− d(x0) + x− x0

in a neighborhood of x0, and thus Lemma 1 implies that v(z) ≥ ua(z) in
a neighborhood of a. So ua is a support function for v at a. Thus, v is
ultrahyperbolic in Ω, and (7) holds by the Ahlfors–Schwarz Lemma.

Suppose that equality in (7) holds for some z ∈ Ω. Then by Heins’s
Theorem 7.1 in [16], equality holds for all z ∈ Ω. Let I be a component
interval of R \ S. Then |I| ≤ 2L. If |I| were strictly less than 2L, then the
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strict monotonicity statement of Lemma 1 would imply that for each y the
right hand side of (7) is not differentiable in x at the midpoint of I. But λΩ

is real analytic in Ω. This contradiction shows that the complement of S in
R is the union of open intervals each having length 2L.

Suppose now that S contains some nondegenerate interval I. Then d(x) =
0 on I. From equality in (7) and real analyticity of λΩ, it follows that λΩ

is constant on all vertical lines between the lines y = 0 and y = 2π. Hence,
λΩ is constant on R \ S. But this is impossible, since λΩ(x)→∞ as x→ S
from within Ω \ S.

We have shown that if equality holds in (7) for some z then S contains
no nondegenerate interval, and that each complementary interval of S has
length 2L. Such an S must be a translate of S(L). Hence, Ω is translate of
ΩL. This completes the proof of Lemma 2. 2

Returning now to the proof of Theorem 3, when Ω is an L-domain which
is not a translate of ΩL, Lemmas 2 and 1 imply that

λΩ(x+ iy) > λΩL (L− d(x) + iy) ≥ λΩL(iy) ≥ λΩL(iπ) . (8)

When Ω is a translate of ΩL and z = x+ iy ∈ ΩL then Lemma 1 implies
λΩ(z) > λΩL(iπ) unless x is a midpoint of a complementary interval of S and
y = π. Inequality (5) and the accompanying equality statement now follow
from (8) and the relations

λΩ(x+ iy) = λD(−ex+iy)ex, λΩL(iπ) = λDK (1),

(
L =

1

2
logK

)
.

The proof of Theorem 3 is complete.

6 Distribution inequalities for hyperbolic metrics

Let Ω be an L-domain, as defined in §5. We just saw that from (7) and (8),
it follows that for each x ∈ R and y ∈ R,

λΩ(x+ iy) ≥ λΩL(iy) = min
x∈R

λΩL(x+ iy) .

In this section, we show that (7) implies a more general sharp inequality
for the distribution function of λΩ on sub-intervals of horizontal lines. For
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a measurable real valued function f on an interval I ⊂ R of finite Lebesgue
measure |I|, the distribution function αf of f on I is defined to be

αf(t) = |{x ∈ I : f(x) > t}| , t ∈ R .

We shall denote by f# the symmetric decreasing rearrangement of f . Its
domain is the interval |x| ≤ 1

2
|I| and it satisfies αf = αf# . If f and g are

two such functions, defined on possibly different intervals I1 and I2 with the
same measure 2T , we have the following well-known lemma.

Lemma 3 For f and g as above, the following are equivalent.

(a) αf(t) ≥ αg(t) , ∀ t ∈ R .

(b) f#(x) ≥ g#(x) , ∀ |x| ≤ T .

(c)
∫
I1

Φ(f(x)) dx ≥
∫
I2

Φ(g(x)) dx

for every nondecreasing function Φ : R→ R for which the integrals exist.

For information about distribution functions and symmetric decreasing
rearrangements, the reader may consult, for example, [15].

Here now is our distribution inequality for hyperbolic densities.

Theorem 4 Let L > 0, Ω be an L-domain, and I ⊂ R be a closed interval
of length 2T , where T ≤ L. Then for each y ∈ R and t ∈ R, we have

|{x ∈ I : λΩ(x+ iy) > t}| ≥ |{x ∈ [−T, T ] : λΩL(x+ iy) > t}| . (9)

From Lemma 3, we see that an equivalent conclusion is∫
I

Φ(λΩ(x+ iy)) dx ≥
∫ T

−T
Φ(λΩL(x+ iy)) dx (10)

for all nondecreasing Φ.
The methods in [5] and [13] involving “star-functions” can be adapted

to prove that (10) holds for all nondecreasing Φ(r) which are also concave
functions of log r. (The arguments in [5] and [13] show that for horizontal
∗-functions, (− log λΩ)∗ ≤ (− log λΩL)∗ holds in the strip |Re z| < L.) Thus,
for the problems considered in this paper, ultrahyperbolic metrics furnish a
more powerful tool than star-functions.
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Uniqueness statements associated with Theorem 4 exist, but we shall
leave their formulations and proofs to the interested reader.

Proof of Theorem 4. Fix y ∈ R. Write

I = [a, b], f(x) = λΩL(L− x+ iy), g(x) = f(d(x)) .

Then f is an even 2L-periodic function on R which, by Lemma 1, strictly
decreases on [0, L]. Here d(x) denotes the distance from x to S. Moreover, f
is continuous as a function into (0,∞], and f and λΩL(x+ iy) have the same
distribution on [−L,L]. According to Lemma 2,

λΩ(x+ iy) ≥ g(x) .

Assume for now that |I| = b− a = 2L. Then it suffices to prove (9) with
g(x) in place of λΩ(x+ iy) and f(x) in place of λΩL(x+ iy). If t ≥ max[0,L] f

then both sides of (9) are zero, and if t ≤ min[0,L] f both sides are 2L, so
assume min[0,L] f < t < max[0,L] f . Let σ ∈ (0, L) be the unique solution of
f(σ) = t, and let E = {x ∈ R : d(x) < σ}. Then g(x) > t if and only if
x ∈ E. So to prove (9) when T = L, it will suffice to prove

|E ∩ I| ≥ 2σ . (11)

Since S is a L-set, the intersection S ∩ I is nonempty. At least one of
the following three cases occurs: (a) [a + σ, b − σ] ∩ S is nonempty. (b)
[a+σ, b−σ]∩S is empty, but [a, a+σ)∩S is nonempty. (c) [a+σ, b−σ]∩S
is empty but (b− σ, b] ∩ S is nonempty.

Suppose case (a) occurs. Take x0 ∈ [a + σ, b − σ] ∩ S. Then d(x) ≤
|x− x0| < σ for x ∈ (x0 − σ, x0 + σ), so (x0 − σ, x0 + σ) ⊂ E ∩ I. Thus, (11)
holds in case (a).

Cases (b) and (c) can be handled symmetrically; we’ll treat (b). Let
x1 be the largest element of [a, a + σ) ∩ S. Then x1 < a + σ. Take x2 ∈
(x1, x1 + 2L] ∩ S. Then x2 > b− σ and x2 − σ ≤ x1 + 2L− σ < a+ 2L = b.
Thus, b ∈ (x2 − σ, x2 + σ), and hence

(a, x1 + σ) ∪ (x2 − σ, b) ⊂ E ∩ I .

The measure of the set on the left is the smaller of b− a and

(x1 + σ − a) + (b− x2 + σ) = 2σ + (b− a)− (x2 − x1) .
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Either way, the measure of the set on the left is at least as large as 2σ.
Inequality (11) is proved for case (b), and the proof of Theorem 4 when
|I| = 2L is finished.

Suppose that |I| = 2T < 2L. Let J be the open interval with the same
center as I and length 2L. Set δ = L− T . If f(δ) ≤ t, then the right side of
(9) is zero, so we assume f(δ) > t. Then

|{x ∈ (−L,L) : f(x) > t}| = 2|{x ∈ (δ, L) : f(x) > t}|+ 2δ ,

while
|{x ∈ J : g(x) > t}| ≤ |{x ∈ I : g(x) > t}|+ 2δ .

From |{x ∈ (−L,L) : f(x) > t}| ≤ |{x ∈ J : g(x) > t}|, it follows that

|{x ∈ I : g(x) > t}| ≥ 2|{x ∈ (δ, L) : f(x) > t}| ,

and this implies (9). 2

Numerous comparison theorems involving minima of hyperbolic metrics
have appeared in the literature. But except for the trivial case when one
domain contains the other, Theorem 4 is the first result we know of in which
the distribution function of the hyperbolic density of some domain is proved
to be everywhere larger than that of another domain. For related comparison
theorems involving various p.d.e.’s, the reader may consult [6].

7 More covering and distribution inequalities

For L > 0 let S ⊂ R be an L-set as defined in §5. Thus S is closed, and S
intersects every closed interval of length 2L. In this section we set

S(L) = (2Z+ 1)L .

This set S(L) is different from the S(L) introduced in §4.
Let λm be the hyperbolic metric of C\(S × mZ). Then, by Hejhal’s

theorem as in §3,
lim
m→∞

λm(z) = λC\S(z), z ∈ C .

Similarly, λC\S(L) is the pointwise limit of hyperbolic metrics for
C\(S(L) × mZ). The results we proved earlier are valid for each λm and
λC\(S(L)×mZ). We conclude that λC\S(L) is even, 2L-periodic, nondecreasing on
horizontal segments [iy, L+iy], and nonincreasing on vertical half-lines [x, x+

13



i∞]. Using Hopf’s maximum principle, as in the proof of Lemma 1, we see
that the monotonicities are strict. Since eπiS(1) = {−1}, the monotonicities
in fact already follow from the theorem of Hempel [17] about monotonicity
of λC\{0,1} on circles and rays through the origin.

Next, we note that inequality (7) is valid when Ω is replaced by C\S and
ΩL by C\S(L). Arguing as in §§5-6, we obtain

Theorem 5 Let S be an L-set on the real line. Then

(a) λC\S(x+ iy) ≥ λC\S(L)(iy), x ∈ R,
and this inequality is strict unless S is a translate of S(L).

(b) For each closed interval I ⊂ R with |I| = 2T ≤ 2L and each y, t ∈ R
we have

|{x ∈ I : λC\S(x+ iy) > t}| ≥ |{x ∈ (−T, T ) : λC\S(L)(x+ iy) > t}| .

To prove the strictness assertion, one first establishes the ≥ statement in
(a), then invokes Heins’s theorem.

Now let n be a positive integer, and let E be a closed subset of the unit
circle which intersects every closed arc of length 2π/n. Put En = {e2πik/n :
k = 0, ..., n− 1}. The mapping w = eiζ , which is the universal covering from
C onto C∗, takes horizontal lines in the ζ-plane to circles |w| = r. Theorem 5
(b) with L = T = π/n, and Lemma 3, imply

Corollary 2 Let E and n be as above. Then for each arc I of the unit circle
with |I| = 2π/n, each r > 0, and each nondecreasing function Φ for which
the integrals exist, we have∫

I

Φ(λC∗\E(reiθ)) dθ ≥
∫
I

Φ(λC∗\En(reiθ)) dθ .

Since λC∗\En(reiθ) has period 2π/n as a function of θ, the integral on
the right side has the same value over every interval of length 2π/n. The
inequality remains true if I has length 2πk/n for some k ∈ {0, . . . , n − 1},
in particular if I = [−π, π].

One can prove an analog of Corollary 2 with C∗ replaced by C or by
C ∪ {∞}. In the first case the additional conditional n ≥ 2 is needed and
in the second case n ≥ 3. To establish these results, one can repeat the
arguments proving Theorems 3–5, with minor modifications.
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Theorem 5(a) implies various covering theorems, of which the following is
the simplest to state. Let GL be the universal covering from U onto C\S(L)
with GL(0) = 0 and G′L(0) > 0. Then GL = LG1.

Corollary 3 For B ∈ (0,∞) let f be a holomorphic function in U with
f(0) ∈ R and |f ′(0)| ≥ B. Then f(U) ∩ R contains an open interval of
length 2B/G′1(0). Moreover, f(U) ∩ R contains a closed interval of length
2B/G′1(0) unless f = GL + c , where c ∈ R and L = B/G′1(0).

An equivalent statement of Corollary 3 is L0 = 2/G′1(0), where L0 is the
real Landau constant defined at the end of §2. Since eπiG1 is the universal
cover from U onto C\{−1, 0}, we deduce

G′1(0) = 1/(πλC\{−1,0}(1)) .

When λ has curvature −4, then, see [15], p.707,

λC\{−1,0}(1) = λC\{0,1}(−1) =
2π2

Γ(1/4)4
. (12)

Thus,

L0 = 2πλC\{0,1}(−1) =
4π3

Γ(1/4)4
.

Hence, Corollary 3 coincides with Theorem 2 in §2, and thus Theorem 2 is
proved.

8 The function A(K)

In the rest of the paper we study the function A(K) = F ′K(0), defined in §2.
We consider rectangular lattices {2mω+2nω′} where ω = L = (lnK)/2, K >

1, and ω′ = πi. Let f be a universal cover of the complement of the lattice by
the unit disc such that f(0) = ω+ω′, the center of the lattice, and f ′(0) > 0.
Then FK = −K−1/2ef . We are interested in the quantity A(K) = f ′(0) as a
function of lnK.

In our use of the standard notation of the theory of elliptic functions
we follow [20] (see also [4]): τ = ω′/ω, h = eπiτ ; θj(ζ) is the j-th theta-
function, θj = θj(0); and Jacobi’s Modular Function is denoted by κ2.

We denote

k =
lnK

2π
=
L

π
=
i

τ
, a(k) = A(e2πk) = f ′(0) = A(K). (13)
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We may assume that f maps a circular quadrilateral Q (having zero angles,
inscribed in the unit circle, symmetric with respect to the reflections in the
coordinate axes) onto a fundamental rectangle R of the lattice, such that
f(0) is the center of R. Then a simple symmetry and rescaling argument
gives the functional equation

a(k−1) = k−1a(k), k > 0 .

Using Hejhal’s theorem as in §3, it is easy to see that in the limit when k → 0,
f maps the unit disc onto the strip 0 < Imw < 2π, and we obtain

a(0) = 4. (14)

Together with the functional equation this implies

a(k) ∼ 4k, k → +∞ ,

that is

A(K) ∼ 2 lnK

π
, K → +∞ .

Differentiating the functional equation we obtain

a′(1) =
1

2
a(1) .

In the next two sections we find a(1) and a′(0).
There is no closed form expression for a(k), and even its numerical com-

putation is a non-trivial task. Finding the density of the hyperbolic metric
in the complement of a rectangular lattice is equivalent to finding a confor-
mal map from a rectangle onto a hyperbolic quadrilateral with zero angles.
This classical problem was investigated by Hilbert [19] and Klein [23], and
in modern times in [22]. The mapping satisfies a Schwarz differential equa-
tion related to a Lamé equation. The problem of finding this mapping for
a given circular quadrilateral (not necessarily inscribed in a circle) requires
determination of the so-called accessory parameter which is a solution of a
transcendental equation involving Hill’s determinants. See [12, 27, 32] for
results in this direction. The only paper we know of where the accessory
parameter was actually computed is [22], but this paper does not contain
a rigorous analysis of convergence of the algorithm. The authors say on p.
217: “It should be emphasized that our remarks about the implicit equations
are purely heuristic and that the actual computation proceeded, as it were,
fortuitously without any a priori justification.”
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9 Finding a(1)

We use the upper half-plane rather than the unit disc. Let T be the open
triangle in the upper half-plane with zero angles and vertices 0, 1,∞. Let the
quadrilateral Q1 be the union of T with its reflection about its left vertical
side and with the positive imaginary axis. Take the “center” to be the point
τ = i.

Let f be the mapping of §8 when k = 1. Then R is a square. Define f1

on Q1 by
f1(τ) = f(ζ)e−iπ/4 ,

where τ(ζ) is a map from the unit disc onto the upper halfplane with τ(0) = i.
Then f1 maps Q1 onto the square R1 of side 2π which has a diagonal along
the positive real axis from 0 to 2π

√
2. To construct f1 on Q1, it suffices

to find a map f1 of T onto the upper half of R1 which carries the positive
imaginary axis to the real interval (0, 2π

√
2), then reflect.

We define f1 as a composition of two functions:

f1 = g ◦ κ2 ,

where κ2 is the Modular Function of Jacobi. (In [4] this function has a double
notation, sometimes λ, sometimes κ2.) κ2 maps T onto the upper half-plane
and sends (∞, 0, 1) to (0, 1,∞). It satisfies κ2(i) = 1/2.

Our second component is a Schwarz-Christoffel map

g(w) = C

∫ w

0

ζ−3/4(1− ζ)−3/4dζ ,

with

C =
2π
√

2

B(1/4, 1/4)
≈ 1.981 ,

where B is Euler’s Beta-function. This g maps the upper half-plane onto the
right triangle constituting the upper half of R1, and sends w = 1/2 to the
middle of the hypotenuse (0, 2π

√
2). We have

g′(1/2) = C · 23/2 =
8π

B(1/4, 1/4)
= 3.887 .

Now κ2 is the restriction to Q1 of a universal cover from the upper half-
plane onto C\{0, 1}. Thus

|(κ2)′(i)| = λH(i)

λC\{0,1}(1/2)
,
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where H denotes the upper half plane.
The Möbius transformation w = z−1

z
maps C\{0, 1} onto itself and carries

1/2 to −1. Using this with (12), we obtain

λC\{0,1}(1/2) = 4λC\{0,1}(−1) =
8π2

Γ4(1/4)
.

Since λH(z) = 1
2y

we have λH(i) = 1/2. Thus,

|(κ2)′(i)| = Γ4(1/4)

16π2
=
B2(1/4, 1/4)

16π
.

Finally, |τ ′(0)| = 2, so

a(1) = A(e2π) = f ′(0) = 2|(κ2)′(i)||g′(1/2)| = B(1/4, 1/4) .

According to Matlab, the numerical value of a(1) = B(1/4, 1/4) is ≈
7.416 .

10 Computation of a′(0)

Recall that for k > 0 the function f maps a certain circular quadrilateral Q
in the unit disk onto the rectangle R with vertices 0, 2πk, 2πk + 2πi, 2πi,
and that a(k) = f ′(0). Of course, Q and f are determined by k. We shall
sketch a proof that

a(k) = 4 +
8k ln 4

π
+ o(k) , k → 0. (15)

Some details will be left to the reader.

Let g2(z) = 2 log 1+z
1−z . The map z → 1 + z

1− z maps geodesics of the unit disk

symmetric with respect to the real axis onto semicircles of constant modulus
in the right half plane. Thus, g2 maps such geodesics onto vertical segments
of length 2π which are symmetric with respect to the real axis. We assume
throughout this section that k is small. Then g2 maps the unit disk onto
the horizontal strip | Imw| < π and maps Q onto a narrow quadrilateral Q2

which is symmetric with respect to both coordinate axes and is bounded by
two vertical segments each of length 2π and two small curves orthogonal to
the boundary of the strip which are almost semicircles. We have

g2
′(0) = 4 .
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Suppose that Q2 has width ε > 0. Then k and ε are functions of each
other, each tending to zero when one of them does. Define f2 by f = f2 ◦ g2.
Then f2 maps Q2 onto the rectangle R. By reflecting in vertical sides, we
extend f2 to a conformal map of a subdomain of | Im z| < π onto the strip
0 < Im z < 2π. As k → 0, the maps converge locally uniformly to a conformal
map of | Im z| < π onto 0 < Im z < 2π which carries 0 to iπ and has positive
derivative at the origin. This limit map must be z → z + iπ. In particular,
the second derivatives of the f2 converge locally uniformly to zero. It follows
that

f2(z)− f2(0) = zf ′2(0) + o(z2)

in a neighborhood of 0, where the error term is uniform in k. Taking z = ε/2
and using f2(ε/2) = 2πk + iπ, we deduce that

f ′2(0) =
2πk

ε
+ o(ε) , ε→ 0 .

Since f ′2(0) converges to 1, it follows that ε ∼ 2πk, and we can replace the
equation above by

f ′2(0) =
2πk

ε
+ o(k), k → 0. (16)

Next, let us rescale both Q2 and R to the width 1, denoting the rescaled
quadrilaterals by Q′2 and R′, and let G be the conformal map from Q′2 onto
R′ with G′(0) > 0. These quadrilaterals are tall; we are interested in the
difference of their heights. If we cut Q′2 and R′ by horizontal segments in
the middle, the lower half of Q′2 will be conformally equivalent to the lower
half of R′ (as curvilinear quadrilaterals). Let us compare the restriction of
G to these halves with the conformal map F of the triangle T (see §9) onto
a vertical halfstrip with vertices 0, 1, ∞ (and right angles at 0 and 1.) Such
a map with the vertex correspondence (0, 1,∞)→ (0, 1,∞) is given by

F (τ) =
1

π
arccos

2− κ2(τ)

κ2(τ)
.

Using the notation from [4, 20], we have

κ2 = (θ2/θ3)4, [20, II,4, §5] ,
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θ2 = 2h1/4(1 + h2 + h6 + h12 + . . . ),

θ3 = 1 + 2h + 2h4 + 2h9 + . . . , (see [20, II,2, §6]),

where
h = exp(πiτ) .

It follows that κ2(h) = 16h− 128h2 +O(h3) as h→ 0 and that

F (τ) = τ − i ln 4

π
+ o(1), τ → +∞, τ ∈ T . (17)

Moreover, using (17) together with extremal length, or by some other
argument, one can show that uniformly for z in the bottom half of R′,

G(z) = F (z +
1

2
+
πi

ε
) + o(1) .

It follows that R′ is shorter than Q′2 by

2

π
ln 4 + o(1) .

The height of R′ equals 1/k and the height of Q′2 equals 2π
ε

. Thus

1/k =
2π

ε
− 2

π
ln 4 + o(1) . (18)

The desired relation (15) now follows from (16), (18) and a(k) = f ′(0) =
4f ′2(0). From (15) we recover the relation a(0) = 4 of (14) and also find that

a′(0) =
8 ln 4

π
= 3.5302 . . . .

Returning to our original notation, and using (14) we obtain

A(K) = 4 +
4 ln 4

π2
(K − 1) + o(K − 1), K → 1 + .
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11 A Conjecture

Rademacher’s Conjecture for the exact value of Landau’s constant may be
formulated as follows: The ratio |f ′(0)|/l(f) is maximized over all holomor-
phic functions f in the unit disk U when f is a universal cover from the disk
onto the complement of a hexagonal lattice and f(0) is the barycenter of one
of its complementary equilateral triangles. Here, as in §2, l(f) denotes the
inradius of the domain f(U). See, for example, [7] for discussion.

This formulation suggests a corresponding problem for rectangular lat-
tices: Maximize |f ′(0)|/l(f) when f runs through all universal covers from
U onto the complement of a rectangular lattice.

Conjecture The maximum ratio is achieved when the lattice is square and
f(0) is the center of some fundamental complementary square.

We may restrict attention to lattices of the form {2mω + 2nω′} with ω
equal to πk for some positive number k and ω′ = πi. Furthermore, from
Lemma 1 in §4, it follows that we need only consider maps f which carry 0
to the center of a fundamental complementary rectangle R. We are now in
the situation of §8, and have

|f ′(0)| = a(k) .

The inradius l(f) equals half the length of the diagonal of R. Thus

l(f) = π(1 + k2)
1
2 .

The rectangle R is a square when k = 1. Thus, the Conjecture above can
be restated as

a(k) ≤ 2−1/2(1 + k2)1/2a(1) , 0 < k <∞ .

Since a(0) = 4 and a(1) = 7.416, the Conjecture is true for small values
of k.
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