Practice exam solutions

1. $|-2 i(3+i)(2+4 i)(1+i)|=2 \sqrt{(9+1)(4+16)(1+1)}=2 \sqrt{400}=40$.
2. The equality says that sum of the distances from z to a and $-a$ is $2 R$. This describes an ellips, whose foci are at a and $-a$. The ellipse is symmetric with respect to the origin, so the largest valkue of $|z|$ is its large semiaxis, that is $|z|=R$, and the smallest is $\sqrt{R^{2}-|a|^{2}}$.
3. Joukowski function is one-to one in the upper half-plane, so it is enough to look at the image of the boundary, which consists of the positive ray and the positive-imaginary ray. The positive ray is mapped onto the ray from the point 1 to the right, passed twice, and the imaginary ray onto the whole imaginary axis. So the image is the right halph-plane, slit along the horizontal ray to the right from the point 1 .
4. Evaluating the area.

$$
A=\iint_{|z-1| \leq 1}\left|f^{\prime}(z)\right|^{2} d a=4 \iint_{|z-1| \leq 1}|z|^{2} d a
$$

In polar coordinates the disc is described by $0 \leq r \leq 2 \cos \phi$ for $-\pi / 2 \leq \phi \leq \pi / 2$, so

$$
A=4 \int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \phi} r^{3} d r d \phi=\int_{-\pi / 2}^{\pi / 2} 2^{4} \cos ^{4} \phi d \phi
$$

If you are not permitted to use tables of integrals, the simplest way to do this is to use complex numbers:
$2^{4} \cos ^{4} \phi=\left(e^{i \phi}+e^{-i \phi}\right)^{4}=e^{4 i \phi}+4 e^{2 i \phi}+6+4 e^{-2 i \phi}+e^{-4 i \phi}=2 \cos 4 \phi+8 \cos 2 \phi+6$.
So $A=6 \pi$.
5. It cannot. Use the Laplace equation and the Cauchy-Riemann equations to conclude that $f=$ const.
6. The first equation is similar to $\cos z=2$, which was solved in class. Solving the second.

$$
\cos z=\frac{w+w^{-1}}{2}, \quad \text { where } \quad w=e^{i z}
$$

We have

$$
\frac{w+w^{-1}}{2}=-i, \quad w^{2}+2 i w+1=0
$$

$$
w=-i \pm \sqrt{-2}=i(-1 \pm \sqrt{2})
$$

where the last square root is the arithmetic one. Now $e^{i z}=i(1 \pm \sqrt{2})$, so

$$
z=-i \log (i(-1 \pm \sqrt{2})= \pm(i \log (1+\sqrt{2}) \pi / 2)+2 \pi k
$$

where k is any integer. Draw a picture!
7. First one:

$$
\int_{|z|=1} \Re z d z=\int_{0}^{2 \pi}(\cos t)\left(i e^{i t}\right) d t=(i / 2) \int_{0}^{2 \pi}\left(e^{2 i t}+1\right) d t=\pi i
$$

Second one:

$$
\int_{0}^{2 \pi}\left|e^{i t}-1\right|^{2}\left(i e^{i t}\right) d t=i \int_{0}^{2 \pi}(2-2 \cos t) e^{i t} d t=-2 \pi i
$$

9. First is true, others are not.
