Fast Fourier Transform. Some answers and solutions

1.3 Look at the remainders modulo 3: \(2^0 = 1, 2^1 = 2 \quad 2^2 = 1\), and so on, the pattern repeats, and \(2^k\) and \(2^{k+1}\) never give equal remainders. So by exercise 1.2, the sums of digits are never equal.

1.5 Modulo 4: 1, 3; modulo 5: 1, 2, 3, 4.

1.6 Those and only those remainders have multiplicative inverse which are mutually prime with the modulus. (Two integers are called mutually prime if they have no common factor, except 1 and -1).

2.3 \(1 + i = \sqrt{2} \exp(i\pi/4),\ 1/2 + i\sqrt{3}/2 = \exp(\pi i/3)\).

3.1 Begin by factoring \(z^5 - 1 = (z - 1)(z^4 + z^3 + z^2 + z + 1)\). It remains to solve

\[z^4 + z^3 + z^2 + z + 1 = 0.\]

Divide by \(z^2\):

\[z^2 + z + 1 + z^{-1} + z^{-2} = 0.\]

Put \(w = z + z^{-1}\) then \(w^2 = z^2 + z^{-2} + 2\); substituting to our equation we obtain

\[w^2 + w - 1 = 0,\]

So \(w_{1,2} = -(1/2) \pm \sqrt{5}/2\). It remains to solve two quadratic equations for \(z\):

\[z + z^{-1} = -1/2 + \sqrt{5}/2 \quad \text{and} \quad z + z^{-1} = -1/2 - \sqrt{5}/2.\]

Solutions of the second equation are

\[-\frac{1 + \sqrt{5}}{4} \pm \frac{i}{2} \sqrt{\frac{5 - \sqrt{5}}{2}},\]

and solutions of the first:

\[-\frac{1 - \sqrt{5}}{4} \pm \frac{i}{2} \sqrt{\frac{5 + \sqrt{5}}{2}}.\]

Remark. On the other hand, the 5-th roots are \(\exp(2\pi i k/5),\ k = 0, 1, 2, 3, 4\). Can you figure out which is which? Then you obtain precise expressions for sin and cos of several angles like 72°, 54°, 26°.
3.2 They are roots of the polynomial $z^N - 1$. By the Fundamental theorem of Algebra, the polynomial factors into linear factors:

$$f(z) = z^N - 1 = (z - z_1)(z - z_2)\ldots(z - z_N).$$

One still has to show that all these factors are distinct. If some factor $(z - z_k)$ appears at least twice, then z_k will be a root of the derivative $f'(z)$. Indeed, if

$$f(z) = (z - z_k)^2g(z) \quad \text{then} \quad f'(z) = 2(z - z_k)g(z) + (z - z_k)g'(z).$$

But $f(z) = z^N - 1$ and $f'(z) = Nz^{N-1}$ have no common roots.

3.3. For degree 12: $\exp(\pi i k/6)$, where $k = 1, 5, 7, 11$ are primitive, the rest are not.

In general, $\exp(2\pi i k/N)$ is primitive if and only if N and k are mutually prime.

4.2 $(2, 4, -2, 4)$.

5.2 Let $F(N)$ be the time spent on calculating N points. We are testing the hypothesis that $F(N) = cN \log_2 N$. Dividing $F(N)$ by $N \log_2 N$, we obtain the series

$$5/12, 25/64, 15/40, 35/96,$$

which is slowly decreasing from .42 to .37. I would say that $c \approx .395$ from these data. Probably the slow increase of performance was due to computer’s training in the process of calculation.

5.3 $(a + e, b + f, c + g, d + h)$. Computation: denote

$$f = (a, b, c, d, e, f, g, h), \quad F = (A, B, C, D, E, F, G, H), \quad G = (A, C, E, G),$$

and let g be the vector we are trying to find. By definition, $G(k) = F(2k)$, $0 \leq k \leq 3$. By definition of FT:

$$F(2k) = \sum_{n=0}^{7} w_8^{2nk}f(n) = \sum_{n=0}^{7} w_4^{nk}f(n).$$

As w_4^{nk}, $0 \leq n \leq 7$ repeat with period 4, the last expression equals

$$\sum_{n=0}^{3} w_4^{nk}(f(n) + f(n + 4)).$$

This means that G is the FT of the sequence $g = (a + e, b + f, c + g, d + h)$.