Practice problems for the final exam

April 27, 2021

1. Let f be a smooth function in $L^{2}(\mathbf{R})$. State the following properties in terms of Fourier transform \hat{f} :
a) f is real (takes real values for all real x),
b) f is even,
c) f is odd,
d) $f(x)=\overline{f(-x)}, x \in \mathbf{R}$

Solution.

a) We have

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(s) e^{i s x} d s
$$

so

$$
\overline{f(x)}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \overline{\hat{f}(s)} e^{-i s x} d s=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \overline{\hat{f}(-s)} e^{i s x} d s
$$

where we made the change of the variable $s \mapsto-s$. Since the function is uniquely defined by its Fourier transform, f will be real if and only if $\hat{f}(s)=\overline{\hat{f}(-s)}$.
b) We have

$$
f(-x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(s) e^{-i s x} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(-s) e^{i s x} d s
$$

So f is even if and only if $\hat{f}(s)=\hat{f}(-s)$, that is Fourier transform must be also even.
c) Same about odd.
e) We have

$$
\overline{f(-x)}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \overline{\hat{f}(s)} e^{i s x} d s
$$

so for e), it is necessary and sufficient that $\hat{f}=\overline{\hat{f}}$ that is \hat{f} is real.
2. Find $f \star g$, where $f(x)=x$ for $x>0$ and $f(x)=0$ for $x \leq 0$, and $g(x)=e^{x}$ for $x<0$ and $g(x)=0$ for $x \geq 0$.

Solution.

$$
(f \star g)(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y=\int_{-\infty}^{\min \{0, x\}}(x-y) e^{y} d y
$$

If $x<0$, this is

$$
\begin{aligned}
\int_{-\infty}^{x}(x-y) e^{y} d y & =x e^{x}-\int_{-\infty}^{x} y e^{y} d y=x e^{x}-\int_{-\infty}^{x} y d\left(e^{y}\right) \\
& =x e^{x}-\left.y e^{y}\right|_{-\infty} ^{x}+\int_{-\infty}^{x} e^{y} d y=e^{x}
\end{aligned}
$$

If $x \geq 0$, this is

$$
\begin{aligned}
\int_{-\infty}^{0}(x-y) e^{y} d y & =x-\int_{-\infty}^{0} y e^{y} d y \\
& =x-\int_{-\infty}^{0} y d\left(e^{y}\right)=x-\left.y e^{y}\right|_{-\infty} ^{0}+\int_{-\infty}^{0} e^{y} d y \\
& =x+1
\end{aligned}
$$

So

$$
(f \star g)(x)= \begin{cases}e^{x}, & x<0 \\ x+1, & x \geq 0\end{cases}
$$

3. How many eigenvalues of the Sturm-Liouville problem

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(1)+y^{\prime}(1)=0
$$

satisfy $-10<\lambda_{j}<10$?
Solution. If $\lambda>0$ the general solution is

$$
y(x)=a \cos (x \sqrt{\lambda})+b \sin (x \sqrt{\lambda})
$$

since $y(0)=0$ we have $a=0$, and can take $b=1$, so

$$
y(1)+y^{\prime}(1)=\sin \sqrt{\lambda}+\sqrt{\lambda} \cos \sqrt{\lambda}=0,
$$

and we have the equation

$$
\tan \sqrt{\lambda}=-\sqrt{\lambda}
$$

which has to be solved for $0<\sqrt{\lambda}<\sqrt{10} \approx \pi$. It has one solution on this interval.

For $\lambda<0$, the general solution is

$$
y(x)=a \cosh (x \sqrt{-\lambda})+b \sinh (x \sqrt{-\lambda})
$$

and again $a=0$ because $y(0)=0$, and we have to solve the equation

$$
\tanh \sqrt{-\lambda}=-\sqrt{-\lambda}
$$

This has no positive solutions.
Finally for $\lambda=0$, the general solution is $y(x)=a x+b$, since $y(0)=0$ we have $b=0$, and the second boundary condition gives $a+a=0$, so $a=0$. So 0 is not an eigenvalue.

Thus the answer is: one.
4. Find a bounded solution of the Laplace equation in the region $\{(x, y)$: $-\infty<x<\infty, y>0\}$ with the boundary conditions

$$
u(x, 0)= \begin{cases}1, & |x|<1 \\ 0, & |x|>1\end{cases}
$$

Solution. Poisson's formula for the half-plane gives

$$
u(x)=\frac{y}{\pi} \int_{-1}^{1} \frac{d t}{(x-t)^{2}+y^{2}}=\frac{1}{\pi}\left(\arctan \frac{y}{x-1}-\arctan \frac{y}{x+1}\right) .
$$

5. Bessel's function $y=J_{0}(x)$ satisfies the differential equation

$$
x y^{\prime \prime}+y^{\prime}+x y=0 .
$$

a) Write a differential equation for the function $w(x)=J_{0}(\sqrt{x})$.
b) Consider the partial differential equation

$$
u_{t t}=\left(x u_{x}\right)_{x}, \quad t>0 \quad 0<x<1,
$$

with the boundary conditions $u(1, t)=0$ and $|u(0, t)|<\infty$. Separate the variables, find the eigenvalues of the related eigenvalue problem and write the general solution satisfying the boundary conditions as a series of the form

$$
\sum_{n} f_{n}(t) g_{n}(x)
$$

f_{n} and g_{n} must be expressed in terms of exponentials, Bessel functions and zeros of Bessel functions. Hint: use part a).

Solution. a) Let $y=J_{0}$. Then $y(x)=w\left(x^{2}\right), y^{\prime}(x)=2 x w^{\prime}\left(x^{2}\right)$ and $y^{\prime \prime}(x)=2 w^{\prime}\left(x^{2}\right)+4 x^{2} w^{\prime \prime}\left(x^{2}\right)$. Plugging all this to the differential equation for J_{0} we obtain

$$
4 x^{3} w^{\prime \prime}\left(x^{2}\right)+4 x w^{\prime}\left(x^{2}\right)+x w\left(x^{2}\right)=0
$$

Dividing on $4 x$, and then replacing x^{2} by x we obtain

$$
\begin{equation*}
x w^{\prime \prime}+w^{\prime}+w / 4=0 . \tag{1}
\end{equation*}
$$

So solutions of this equation which are finite at 0 are of the form $c J_{0}(\sqrt{x})$, where c is a constant.
b) Write the equation in the form $u_{t t}=x u_{x x}+u_{x}$; substituting $u(x, t)=$ $f(t) g(x)$ to separate the variables, we obtain

$$
\begin{gathered}
f^{\prime \prime} g=x f g^{\prime \prime}+f g^{\prime} \\
\frac{f^{\prime \prime}}{f}=x \frac{g^{\prime \prime}}{g}+\frac{g^{\prime}}{g}=-\lambda
\end{gathered}
$$

where λ is a constant. In x-variable, we have the boundary value problem

$$
\begin{equation*}
x g^{\prime \prime}+g^{\prime}+\lambda g=0 \tag{2}
\end{equation*}
$$

and the boundary conditions that $g(0)$ is finite and $g(1)=0$.
To obtain the equation (1) that we solved in part a), we do the same that we did with Bessel functions, that is look for g in the form $g(x)=w(4 \lambda x)$. Then $g^{\prime}=4 \lambda w^{\prime}(4 \lambda x), g^{\prime \prime}=16 \lambda^{2} w^{\prime \prime}(4 \lambda x)$ and thus w will solve (1). Thus we obtained the solution of (2) in the form

$$
g(x)=w(4 \lambda x)=J_{0}(2 \sqrt{\lambda x}) .
$$

Substituting the boundary condition $g(1)=0$ we obtain that $2 \sqrt{\lambda}=x_{k}$, a zero of J_{0}, so the eigenvalues are

$$
\lambda_{k}=x_{k}^{2} / 4, \quad k=1,2,3, \ldots
$$

and eigenfunctions are

$$
g_{k}(x)=J_{0}\left(x_{k} \sqrt{x}\right)
$$

It remains to solve for the time component:

$$
f^{\prime \prime}+\lambda f=0
$$

since all λ_{k} are positive we have

$$
f_{k}(t)=a_{k} \cos \left(\sqrt{\lambda_{k}} t\right)+b_{k} \sin \left(\sqrt{\lambda_{k}} t\right)=a_{k} \cos \left(x_{k} t / 2\right)+b_{k} \sin \left(x_{k} t / 2\right)
$$

So the answer is

$$
u(x, t)=\sum_{n=1}^{\infty}\left(a_{n} \cos \left(x_{n} t / 2\right)+b_{n} \sin \left(x_{n} t / 2\right)\right) J_{0}\left(x_{k} \sqrt{x}\right)
$$

6. Suppose that a function f of one real variable x, and its Fourier transform \hat{f} are known. Express Fourier transforms of the following functions g in terms of f and \hat{f}. You may use convolution in your answer.
a) $g(x)=x f(-2 x)$,
b) $g(x)=f^{\prime \prime}(x)+x f(x)$,
c) $g(x)=f^{2}(x-2)$,
d) $g(x)=\hat{f}(x)$,
e) $g(x)=e^{-x^{2}} f(x)$.
f) $g(x)=\overline{f(x)}$.

Answers.
a) $(-i / 4) \hat{f}^{\prime}(-s / 2)$
b) $-s^{2} \hat{f}(s)+i f^{\prime}(s)$
c) $\frac{1}{2 \pi} e^{-2 i s}(\hat{f} \star \hat{f})(s)$
d) $2 \pi f(-x)$
e) $\sqrt{\pi} e^{-s^{2} / 4} \star \hat{f}(s)$.
f) $\overline{\hat{f}(-s)}$.
7. For the function

$$
f(x)= \begin{cases}1, & |x|<1 \\ 0 & \text { otherwise }\end{cases}
$$

a) Compute $f \star f$.
b) Find the Fourier transform of $f^{\star 100}=f \star f \star \ldots \star f$, the convolution of f with itself 100 times.

Answers.
a)

$$
(f \star f)(x)= \begin{cases}2-2 x, & |x|<2 \\ 0, & \text { otherwise }\end{cases}
$$

b) $\frac{2^{n} \sin ^{n} s}{s^{n}}$.
8. Find five smallest eigenvalues λ of the Laplace equation

$$
\Delta u+\lambda u=0
$$

in the square

$$
\left\{(x, y) \in \mathbf{R}^{2}: 0<x<1,0<y<1\right\}
$$

with the boundary conditions

$$
u_{x}(0)=u_{x}(1)=0, \quad u_{y}(0)=y_{y}(1)=0 .
$$

Find dimensions of eigenspaces corresponding to these eigenvalues.
Solution. To separate the variables we write $u=X Y$, then

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\lambda=0
$$

Since each summand in the LHS is a function of one variable, all these summands must be constants; denote then by $-p$ and $-q$. Then

$$
X^{\prime \prime}+p X=0, \quad X(0)=0, X^{\prime}(1)=0
$$

The general solution is

$$
X\left(x_{1}\right)=a \cos (\sqrt{p} x)+b \sin (\sqrt{q} x) .
$$

the boundary conditions imply $b=0$ and $\sin \sqrt{p}=0$, so $p=\pi^{2} m^{2}$, and similarly $q=\pi^{2} n^{2}$, where $m, n=0,1,2, \ldots$. So

$$
\lambda_{m, n}=\pi^{2}\left(m^{2}+n^{2}\right)
$$

and the smallest eigenvalues are 0 (one-dimensional eigenspace) π^{2} (twodimensional eigenspace) $2 \pi^{2}$ (one dimensional eigenspace) $4 \pi^{2}$ (two-dimensional eigenspace) and $5 \pi^{2}$ (two-dimensional eigenspace).

