# Practice problems for the final exam 

April 7, 2021

1. Let $f$ be a smooth function in $L^{2}(\mathbf{R})$. State the following properties in terms of Fourier transform $\hat{f}$ :
a) $f$ is real (takes real values for all real $x$ ),
b) $f$ is even,
c) $f$ is odd,
d) $f(x)=\overline{f(-x)}, x \in \mathbf{R}$
2. Find $f \star g$, where $f(x)=x$ for $x>0$ and $f(x)=0$ for $x \leq 0$, and $g(x)=e^{x}$ for $x<0$ and $g(x)=0$ for $x \geq 0$.
3. How many eigenvalues of the Sturm-Liouville problem

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(1)+y^{\prime}(1)=0
$$

satisfy $-10<\lambda_{j}<10$ ?
4. Find a bounded solution of the Laplace equation in the region $\{(x, y)$ : $-\infty<x<\infty, y>0\}$ with the boundary conditions

$$
u(x, 0)= \begin{cases}1, & |x|<1 \\ 0, & |x|>1\end{cases}
$$

5. Bessel's function $y=J_{0}(x)$ satisfies the differential equation

$$
x y^{\prime \prime}+y^{\prime}+x y=0 .
$$

a) Write a differential equation for the function $w(x)=J_{0}(\sqrt{x})$.
b) Consider the partial differential equation

$$
u_{t t}=\left(x u_{x}\right)_{x}, \quad t>0 \quad 0<x<1
$$

with the boundary conditions $u(1, t)=0$ and $|u(0, t)|<\infty$. Separate the variables, find the eigenvalues of the related eigenvalue problem and write the general solution satisfying the boundary conditions as a series of the form

$$
\sum_{n} f_{n}(t) g_{n}(x)
$$

$f_{n}$ and $g_{n}$ must be expressed in terms of exponentials, Bessel functions and zeros of Bessel functions. Hint: use part a).
6. Suppose that a function $f$ of one real variable $x$, and its Fourier transform $\hat{f}$ are known. Express Fourier transforms of the following functions $g$ in terms of $f$ and $\hat{f}$. You may use convolution in your answer.
a) $g(x)=x f(-2 x)$,
b) $g(x)=f^{\prime \prime}(x)+x f(x)$,
c) $g(x)=f^{2}(x-2)$,
d) $g(x)=\hat{f}(x)$,
e) $g(x)=e^{-x^{2}} f(x)$.
f) $g(x)=\overline{f(x)}$.
7. For the function

$$
f(x)= \begin{cases}1, & |x|<1 \\ 0 & \text { otherwise }\end{cases}
$$

a) Compute $f \star f$.
b) Find the Fourier transform of $f^{\star 100}=f \star f \star \ldots \star f$, the convolution of $f$ with itself 100 times.
8. Find five smallest eigenvalues $\lambda$ of the Laplace equation

$$
\Delta u+\lambda u=0
$$

in the square

$$
\left\{(x, y) \in \mathbf{R}^{2}: 0<x<1,0<y<1\right\}
$$

with the boundary conditions

$$
u_{x}(0)=u_{x}(1)=0, \quad u_{y}(0)=y_{y}(1)=0 .
$$

Find dimensions of eigenspaces corresponding to these eigenvalues.

