NAME:

1. Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

(The answer should be a real number).
ANSWER: $(\pi / \sinh \pi-1) / 2$
2. Find the radii of convergence of the following series:
a) $\sum_{n=1}^{\infty} \frac{5^{n}}{n} z^{2 n}$,

ANSWER: $1 / \sqrt{5}$
b) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!} z^{n}$,

ANSWER: $1 / e$
c) $\sum_{n=1}^{\infty} \frac{n!}{10^{n}} z^{n}$,

ANSWER: 0
d) $\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{e^{z}}{z^{2}+z+2}$,

ANSWER: $\sqrt{2}$
e) $\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{\log (z+2)}{z+1}$.

ANSWER: 2.
3. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\cos (x \sqrt{2})}{x^{4}+1} d x
$$

(The answer should be a real number).

ANSWER: $\pi 2^{-3 / 2} e^{-1}(\cos 1+\sin 1)$
4. Evaluate the integral

$$
\int_{|z|=2}\left(z^{3}+z\right) \cos \left(\frac{1}{z}\right) d z
$$

where the circle is described counterclockwise.
ANSWER: $-11 i \pi / 12$.
5. For which complex values of a the equation

$$
\cot z=a
$$

has no complex solutions?
ANSWER: $a=i$ and $a=-i$.
6. a) Find the conformal map f of the region

$$
\{z: \operatorname{Re} z>0, \operatorname{Im} z>0,|z|<1\}
$$

onto the upper half-plane, such that

$$
f(i)=0, \quad f(0)=1, \quad f(1)=\infty
$$

b) Find $f((1+i) / 2)$.

ANSWER:
$f(z)=\left(J\left(z^{2}\right)+1\right) /\left(J\left(z^{2}\right)-1\right)=\left(\frac{z^{2}+1}{z^{2}-1}\right)^{2}, \quad f((1+i) / 2)=(-7+24 i) / 25$.

Solution 1. z^{2} maps our region onto the upper half of the unit disk. Then Joukowski function $J(z)=(z+1 / z) / 2$ maps the upper half of the unit disk onto the lower half-plane. Then plugging the values $(i, 0,1)$ to $J\left(z^{2}\right)$ we obtain $(-1, \infty, 1)$ and it remains to send $(-1, \infty, 1)$ to $(0,1, \infty)$ which is done by the linear-fractional transformation

$$
\frac{z+1}{z-1}
$$

So the answer is

$$
\frac{J\left(z^{2}\right)+1}{J\left(z^{2}\right)-1}=\left(\frac{z^{2}+1}{z^{2}-1}\right)^{2}
$$

Solution 2. The first step z^{2} is the same, but if you do not remember the Joukowski function, you can treat the upper half-disk as a "moon", and aply

$$
\frac{z+1}{z-1}
$$

to it (to send the corners $(-1,1)$ to $(0, \infty)$. Under this map, the image of the "moon" is the 3 -d quadrant. It is sent to the upper half-plane by another squaring, which results in the function

$$
\left(\frac{z^{2}+1}{z^{2}-1}\right)^{2}
$$

which happens to give the prescribed correspondence of the three boundary points.
7. How many solutions does the equation

$$
e^{z-2}=z^{2}
$$

have in the unit disk $\{z:|z|<1\}$?

ANSWER: two.
8. Does there exist a real function $u(x, y)$ such that the function

$$
f(x+i y)=u(x, y)+i\left(x-x^{3}+3 x y^{2}\right)
$$

is analytic in the whole plane?
If the answer is "no", explain why; if the answer is "yes", find this function u.

ANSWER: $u(x, y)=-y-y^{3}+3 x^{2} y+c$.

