Math 511, Final exam, fall 2019

NAME:

Problems 1-4 are multiple choice: just circle the letters, no partial credit.
Problems 5-9 are partial credit, but please write your answer, if you obtain one, next to the problem.

1. Circle the letters corresponding to the statements which are true for all square matrices A, B of the same size.
A. If v is an eigenvector of A then v is also an eigenvector of e^{A}.
B. $e^{A+B}=e^{A} e^{B}$.
C. If A and B are similar then $\operatorname{tr} A=\operatorname{tr} B$.
D. If A is non-singular then it is diagonalizable.
E. If $A^{2019}=0$ then A is singular.
2. Circle the letters which correspond to the statements which are true for all square 5×5 matrices A, B, C.
A. $\operatorname{det}(-A)=-\operatorname{det}(A)$.
B. $\operatorname{det}(3 A)=3 \operatorname{det}(A)$.
C. $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
D. $\operatorname{det}(A B C)=\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(C)$.
E. Determinant of A does not change if the rows A are rearranged in the opposite order.
3. Circle the letters which correspond to true statements for all square matrices of the same size:
A. If A and B are Hermitian matrices then $A+B$ is Hermitian.
B. If A and B are Hermitian then $A B$ is Hermitian.
C. If A and B are unitary then $A+B$ is unitary.
D. If A and B are unitary then $A B$ is unitary.
E. If A is Hermitian and B is unitary then $B^{-1} A B$ is defined and is Hermitian.
4. Suppose that A is a real symmetric negative definite matrix of size 4×4, that is $x^{T} A x<0$ for all $x \neq 0$. What conclusions can be made from this ? Circle the corresponding letters.
A. A is non-singular
B. All eigenvalues of A are strictly negative.
C. Determinant of A is negative.
D. All upper left minors of A are negative.
E. No row exchanges are required when bringing A to the upper triangular form by row operations.
5. For the matrix

$$
\left(\begin{array}{ccc}
2 & 2 & -2 \\
0 & 1 & 0 \\
1 & 1 & -1
\end{array}\right)
$$

find the Jordan form and a Jordan basis.
6. Find $e^{A t}$ for the matrix

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

(Exponential is defined as a matrix solution $X(t)$ of the differential equation

$$
\left.\frac{d}{d t} X=A X, \quad \text { such that } \quad X(0)=I .\right)
$$

7. Find the signature of the quadratic form

$$
x y+y z+x z
$$

8. Evaluate the determinant
$\left|\begin{array}{lllll}x & y & y & y & y \\ y & x & y & y & y \\ y & y & x & y & y \\ y & y & y & x & y \\ y & y & y & y & y\end{array}\right|$.
9. The first and second columns of a rotation matrix A are

$$
\left(\begin{array}{c}
1 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{c}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right)
$$

a) Find the third column of A.
b) How many solutions does this problem have?
c) If two columns a and b are given, what are the conditions on a and b for this problem to be solvable?

