Math 511, Final exam solved, fall 2019

NAME:

Problems 1-4 are multiple choice: just circle the letters, no partial credit.
Problems 5-9 are partial credit, but please write your answer, if you obtain one, next to the problem.

1. Circle the letters corresponding to the statements which are true for all square matrices A, B of the same size.
A. If v is an eigenvector of A then v is also an eigenvector of e^{A}.
B. $e^{A+B}=e^{A} e^{B}$.
C. If A and B are similar then $\operatorname{tr} A=\operatorname{tr} B$.
D. If A is non-singular then it is diagonalizable.
E. If $A^{2019}=0$ then A is singular.

Ans.: A, C, E.
Solution. A. If $A v=\lambda v$ then $A^{m}=\lambda^{m} v$, so

$$
e^{A} v=\left(\sum_{m=0}^{\infty} \frac{A^{m}}{m!}\right) v=\left(\sum_{m=0}^{\infty} \frac{\lambda^{m}}{m!}\right) v=e^{\lambda} v
$$

B. Not true. The LHS does not change if we interchange A and B while the right side can change.
C. True, since similar matrices have the same characteristic polynomial:

$$
\operatorname{det}\left(C A C^{-1}-\lambda I\right)=\operatorname{det}\left(C(A-\lambda I) C^{-1}\right)=\operatorname{det}(A-\lambda I)
$$

D. Not true. Counterexample is a Jordan cell with non-zero eigenvalue.
E. True. If $A^{2019} x=0, x \neq 0$, then $A^{2018} x$ belongs to $N(A)$. If $A^{2018} x=0$ then $A^{2017} x$ belongs to $N(A)$, and so on. Eventually we will find a non-zero vector in $N(A)$. This means that A is singular.
2. Circle the letters which correspond to the statements which are true for all square 5×5 matrices A, B, C.
A. $\operatorname{det}(-A)=-\operatorname{det}(A)$.
B. $\operatorname{det}(3 A)=3 \operatorname{det}(A)$.
C. $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
D. $\operatorname{det}(A B C)=\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(C)$.
E. Determinant of A does not change if the rows A are rearranged in the opposite order.

Ans.: A, D, E.
Solution. A. True. Multiplying A on -1 is the same as multiplying each row on -1 , so determinant is multiplied on $(-1)^{5}=-1$.
B. No. The correct formula is $\operatorname{det}(3 A)=3^{5} \operatorname{det}(A)$.
C. No. For example, it is easy to write I, whose determinant is 1 , as a sum of two diagonal matrices with zeros and ones on the main diagonal; their determinants are 0 .
D. True. In general $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, this is a theorem which was proved in class. Applying it twice we obtain the formula in D.
E. True. This depends on the sign of the permutation $(n, n-1, \ldots, 1)$. For $n=5$ this permutation has 2 transpositions so it is even.
3. Circle the letters which correspond to true statements for all square matrices of the same size:
A. If A and B are Hermitian matrices then $A+B$ is Hermitian.
B. If A and B are Hermitian then $A B$ is Hermitian.
C. If A and B are unitary then $A+B$ is unitary.
D. If A and B are unitary then $A B$ is unitary.
E. If A is Hermitian and B is unitary then $B^{-1} A B$ is defined and is Hermitian.

Ans.: A, D, E.
Solutions. A. True. This was proved in class. It follows from the rule $(A+B)^{*}=A^{*}+B^{*}$.
B. False. $(A B)^{*}=B^{*} A^{*}$. This is equal to $A^{*} B^{*}$ only when A and B commute.
C. False. Take $A=I, B=-I$. They are unitary but their sum is 0 not unitary.
D. True. $(A B)(A B)^{*}=A B B^{*} A^{*}=I$.
E. True. This is defined because unitary matrices are invertible, and $B^{-1}=B^{*}$. Thus

$$
\left(B^{-1} A B\right)^{*}=\left(B^{*} A B\right)^{*}=B^{*} A^{*} B=B^{-1} A B
$$

4. Suppose that A is a real symmetric negative definite matrix of size 4×4, that is $x^{T} A x<0$ for all $x \neq 0$. What conclusions can be made from this ? Circle the corresponding letters.
A. A is non-singular
B. All eigenvalues of A are strictly negative.
C. Determinant of A is negative.
D. All upper left minors of A are negative.
E. No row exchanges are required when bringing A to the upper triangular form by row operations.

Ans.: A, B, E.
Solution. A. True. $x^{T} A x<0$ for all $x \neq 0$ means that the signature consists of n minuses.
B. True. By the spectral theorem, A is congruent to the diagonal matrix with eigenvalues on the main diagonal.
C. False. Determinant is the product of eigenvalues. Since they are all negative and there are 4 of them, the determinant is positive.
D. False. For the same reason as C.
E. True. $-A$ is positive definite. For positive definite matrix, no row exchanges are required (this was proved in class). So for A they are also not required.
5. For the matrix

$$
\left(\begin{array}{ccc}
2 & 2 & -2 \\
0 & 1 & 0 \\
1 & 1 & -1
\end{array}\right)
$$

find the Jordan form and a Jordan basis.

Solution. The characteristic polynomial is

$$
-\lambda(\lambda-1)^{2}
$$

To obtain it, expand $\operatorname{det}(A-\lambda I)$ along the second row. For $\lambda_{1}=0$ we obtain an eigenvector $v_{1}=(1,0,1)^{T}$. For $\lambda_{2}=1$ we obtain an eigenvector $v_{1}=(2,0,1)^{T}$. Since the eigenspace of λ_{2} is one-dimensional, and λ_{2} is the root of multiplicity 2 , there must be a generalized eigenvector, So the Jordan form must be

$$
J=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Solving $(A-I) v_{3}=v_{2}$ we find $v_{3}=(0,1,0)^{T}$. These v_{1}, v_{2}, v_{3} form a Jordan basis.
6. Find $e^{A t}$ for the matrix

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

(Exponential is defined as a matrix solution $X(t)$ of the differential equation

$$
\left.\frac{d}{d t} X=A X, \quad \text { such that } \quad X(0)=I .\right)
$$

Solution. The characteristic equation of A is

$$
\lambda^{2}-2 \lambda+2=0
$$

Taking $\lambda_{1}=1+i$ we find an eigenvector $v_{1}=(1, i)^{T}$. To this eigenvector corresponds a solution of the differential equation

$$
e^{(1+i) t}\binom{1}{i}=e^{t}(\cos t+i \sin t)\binom{1}{i}=e^{t}\left(\binom{\cos t}{-\sin t}+i\binom{\sin t}{\cos t}\right)
$$

So a real fundamental matrix is

$$
\Phi(t)=e^{t}\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) .
$$

Since $\Phi(0)=I$ it equals $e^{A t}$.
7. Find the signature of the quadratic form

$$
x y+y z+x z
$$

Solution. Set $x=u+v, y=u-v$. Then

$$
\begin{aligned}
& x y+y z+x z \\
= & u^{2}-v^{2}+u z-v z+u z+v z=u^{2}-v^{2}+2 u z \\
= & \left(u^{2}+2 u z+z^{2}\right)-z^{2}-v^{2}=(u+z)^{2}-z^{2}-v^{2},
\end{aligned}
$$

so the signature is $(+,-,-)$.
8. Evaluate the determinant
$\left|\begin{array}{lllll}x & y & y & y & y \\ y & x & y & y & y \\ y & y & x & y & y \\ y & y & y & x & y \\ y & y & y & y & y\end{array}\right|$.

Solution. Subtract the last column from each of the rest. We obtain an upper triangular matrix whose determinant is $(x-y)^{4} y$.
9. The first and second columns of a rotation matrix A are

$$
\left(\begin{array}{c}
1 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{c}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right)
$$

a) Find the third column of A.
b) How many solutions does this problem have?
c) If two columns a and b are given, what are the conditions on a and b for this problem to be solvable?

Solution. The two given columns are orthonormal. The third columns must be orthogonal to them, so for its coordinates we have a system of two equations:

$$
\begin{aligned}
& x_{1}+2 x_{2}-2 x_{3}=0 \\
& 2 x_{1}+x_{2}+2 x_{3}=0
\end{aligned}
$$

This system has one dimensional set of solutions which is spanned by the vector $(-2,2,1)^{T}$. Normalizing it we obtain two possible third columns $\pm(-2 / 3,2 / 3,1 / 3)^{T}$. To choose one of them, we need to use the condition that determinant of an orthogonal matrix must be 1 . Since

$$
\left|\begin{array}{ccc}
1 & 2 & -2 \\
2 & 1 & 2 \\
-2 & 2 & 1
\end{array}\right|=-27
$$

we have to choose the minus sign. So the third column is $(2 / 3,-2 / 3,-1 / 3)^{T}$. This answers a).

An analysis of this solution shows that the answer to b) is "one".
For c), we must have $a^{T} b=0,\|a\|=\|b\|=1$. If these conditions are satisfied, then the system of equations obtained from the condition of the orthogonality of the third column will have one-dimensional set of solutions, so there will be two unit vectors satisfying this system, and one of them will give a positive determinant.

