Math 525, Final exam. Fall 2021

NAME:

1. Solve the equation

$$
\tan z=2 i .
$$

Write all solutions and make a picture of them.

Solution. The equation is

$$
\frac{\sin z}{\cos z}=2 i
$$

Let $w=e^{i z}$, then our equation becomes

$$
\frac{w-w^{-1}}{i\left(w+w^{-1}\right)}=2 i
$$

or

$$
3 w^{2}+1=0
$$

so $w_{1,2}= \pm i / \sqrt{3}$. Now

$$
i z=\log w=\log |w|+i \arg w=-(1 / 2) \log 3 \pm i \pi / 2+2 \pi i n,
$$

and

$$
z=(i / 2) \log 3 \pm \pi / 2+2 \pi n
$$

To make a good picture, notice that $\log 3>0$, and that the sequence has period π.
2. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\cos z}{z^{2}+1} d z
$$

Solution. Denote our integral by I. Then

$$
I=\frac{1}{2} \operatorname{Re} \int_{-\infty}^{\infty} \frac{e^{i z}}{z^{2}+1}=\frac{1}{2} \operatorname{Re} 2 \pi i \operatorname{res}_{i}
$$

and

$$
\operatorname{res}_{i} \frac{e^{i z}}{(z-i)(z+i)}=\frac{e^{-1}}{2 i}
$$

So we obtain $I=\pi /(2 e)$.
3. a) Find a conformal maps f of the region

$$
\left\{z=x+i y: x>0, y>0, x^{2}+y^{2}<1\right\}
$$

onto the upper half-plane.
b) Is it possible to find such a conformal map with the additional properties $f(1)=0, f(i)=1, f(0)=\infty$? If your answer is positive, find it, if negative, explain why.

Solution. The region is the intersection of the unit disk with the first quadrant. Function z^{2} maps it onto the upper half of the unit disk. To send the corners of the upper half of the unit disk to $(0, \infty)$, apply

$$
\frac{z+1}{z-1}
$$

which maps the upper half of the unit disk onto the 3 -d quadrant. Then square the result to obtain the upper half-plane. So an answer to a) can be

$$
f(z)=\left(\frac{z^{2}+1}{z^{2}-1}\right)^{2}
$$

To answer b), notice that $(1, i, 0)$ are in the order of positive orientation of our region (the region stays on the left), and f sends $(1, i, 0)$ to $(\infty, 0,1)$ (in this order). The points $(0,1, \infty)$ are in the same order on the boundary of the upper half-plane, therefore there is a fractional-linear transformation of the upper half-plane onto itself that sends $(\infty, 0,1)$ to $(0,1, \infty)$. So the answer to b) is "yes", and the required transformation is

$$
\frac{1}{1-z}
$$

Combining all pieces we obtain

$$
\frac{1}{1-\left(\frac{z^{2}+1}{z^{2}-1}\right)^{2}}=-\frac{\left(z^{2}-1\right)^{2}}{4 z^{2}}
$$

4. How many solutions does the equation

$$
e^{z}=z^{2}-2
$$

have in the left half-plane?
Solution. Apply Rouche's theorem to a large half-disk of the form

$$
\{z:|z|=R, \operatorname{Re} z<0\}
$$

Our equation is equivalent to

$$
e^{z}-z^{2}+2=0
$$

We have $\left|e^{z}\right| \leq 1$ in the closed left half-plane, while

$$
\left|-z^{2}+2\right| \geq\left|z^{2}\right|-2=R^{2}-2 \rightarrow+\infty, \quad R \rightarrow+\infty
$$

so the function $z^{2}-2$ is large on the half-circle, while on the imaginary axis, $z=i t$,

$$
\left|z^{2}-2\right|=\left|(i y)^{2}-2\right|=\left|-y^{2}-2\right|=y^{2}+2>1 .
$$

So everywhere on the boundary $\left|e^{z}\right|<\left|z^{2}-2\right|$, and the equation has the same number of solutions in the region as $z^{2}-2=0$, that is one solution.
5. Evaluate the integral

$$
\int_{|z|=4} \frac{e^{z}}{\sin z} d z
$$

Solution. The function has 3 poles in the disk $|z|<4$. (The poles are at πn and $|\pi n|<4$ for $n=0,1,-1$.) All these poles are simple, and the residues are

$$
\begin{gathered}
\operatorname{res}_{0} \frac{e^{z}}{\sin z}=1 \\
\operatorname{res}_{\pi} \frac{e^{z}}{\sin z}=-e^{\pi}
\end{gathered}
$$

and

$$
\operatorname{res}_{-\pi} \frac{e^{z}}{\sin z}=-e^{-\pi}
$$

So by the Residue theorem, the integral is equal to

$$
2 \pi i\left(1-e^{\pi}-e^{-\pi}\right)=2 i \pi(1-2 \cosh \pi)
$$

6. Describe and sketch the set

$$
\left\{z:\left|e^{z^{2}}\right|=2\right\}
$$

Solutiona Let $z=x+i y$. Then

$$
\left|e^{z^{2}}\right|=e^{\operatorname{Re}(x+i y)^{2}}=e^{x^{2}-y^{2}}=2=e^{\log 2}
$$

defines a hyerbola

$$
x^{2}-y^{2}=\log 2 .
$$

7. a) Find the radius of convergence of the series

$$
f(z)=\sum_{1}^{\infty} \frac{2^{n}}{n} z^{n}
$$

b) Find $f(z)$ explicitly (it is an elementary function).

Solution. Since

$$
\left(\frac{2^{n}}{n}\right)^{1 / n} \rightarrow 2, \quad n \rightarrow \infty
$$

the radius of convergence is $1 / 2$.
To answer b), differentiate the series:

$$
f^{\prime}(z)=\sum_{1}^{\infty} 2^{n} z^{n-1}=\frac{2}{1-2 z}
$$

Integrating, we obtain

$$
f(z)=-\log (1-2 z)+c
$$

and plugging $z=0$ we obtain $c=0$.

