April, 2000

Name: _____

1. How many roots do these equations have in the specified regions?

a)
$$z^4 - 3z + 1 = 0$$
 in $|z| < 1$,

b)
$$z = 2 - e^{-z}$$
 in the right half-plane; on the positive ray.

c)
$$z^6 - 6z + 10$$
 in $|z| > 1$.

2. Evaluate the integrals

$$\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2 - 2ix - 2} dx, \quad \int_{0}^{\infty} \frac{\operatorname{Log} x}{(x+1)^2} dx, \quad \int_{0}^{\infty} \frac{1 - \cos 2x}{x^2} dx.$$

3. Find the sum of the series

$$\sum_{n=1}^{\infty} (-1)^n n^{-2},$$

by integrating $z^{-2} \csc \pi z$ over an appropriate countur.

4. Find the Laurent series expansions:

a) of
$$1/(z-2)$$
 in $1 < |z-3| < \infty$,

b) of
$$z^2 \sin \pi \frac{z+1}{z}$$
 in $0 < |z| < \infty$.

5. Find and classify all isolated singularities of these functions:

$$\frac{\sin \pi z^2}{\sin \pi z}$$
, $\exp \tan z$, $\frac{1}{e^z + 1}$.

6. Find the radius of convergence of these power series

$$\frac{\text{Log}z}{z-1} = \sum_{n=0}^{\infty} a_n (z-3)^n,$$

$$\frac{\text{Log}z}{z-1} = \sum_{n=0}^{\infty} b_n (z+1+i)^n,$$

$$\sum_{n=0}^{\infty} 2^n z^{n!}.$$

7. Expand into Laurent series:

$$(z^2 - 1)^{-1}$$
in $|z| > 1$,
 $(z^2 - 1)^{-1}$ in $0 < |z + 1| < 2$,
 $z^2 \sin(1/z)$ in $|z| > 0$.

8. Find a harmonic conjugate to

$$e^x(x\cos y - y\sin y).$$

- 9. Yes or no:
 - a) Log|z| is harmonic in $0 < |z| < \infty$,
 - b) Log|z| is the real part of some analytic function in $0 < |z| < \infty$,
 - c) $\int e^{1/z^2} dz$ is path independent in $0 < |z| < \infty$,
 - d) $\int ze^{1/z^2}dz$ is path independent in $0 < |z| < \infty$,
 - e) $|\cos z|$ for $|z| \le 1$ has maximal value at the point 0.
- f) if P is a polynomial of degree at least 2, whose all zeros belong to the unit disc, then $\int_{|z|=2} (1/P(z)) dz = 0$.