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Abstract. We show that for given four points on the sphere and
prescribed angles at these points which are not multiples of 2π,
the number of metrics of curvature 1 having conic singularities
with these angles at these points is finite.
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1. Introduction

We consider metrics of constant positive curvature with n conic sin-
gularities on the sphere. Without loss of generality we assume that
curvature equals 1. Such a metric can be described by the length ele-
ment ρ(z)|dz|, where z is a local conformal coordinate and ρ satisfies

∆ log ρ+ ρ2 = 2π
n−1
∑

j=0

(αj − 1)δaj ,

where aj are the singularities with angles 2παj. The problem is to
describe the set of such metrics with prescribed singularities and angles.
For the recent results on the problem we refer to [9], [11], [12], [16],

[17], [18]. It is believed that when none of the αj is an integer, the
number of such metrics with prescribed aj and αj is finite. This number
has been found in some special cases, [26], [8], [10], [11], [12], [14], in
particular, there is at most one such metric in the following two cases:
a) when n ≤ 3 and the angles are not multiples of 2π, [26], [8], and
b) when αj < 1 for all j, and n is arbitrary, [14]. A new approach to
the uniqueness was recently published in [2] where a different proof of
the main result of [14] is obtained. However for large angles and n ≥ 4
there is usually more than one metric [6, 10, 11].
In this paper we address the case n = 4. We briefly recall the

reduction of the problem to a problem about Heun’s equation, see [10].
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If S is the sphere equipped with such a metric, one can consider a
developing map f : S → C, where C is the Riemann sphere equipped
with the standard metric of curvature 1. Strictly speaking, f is defined
on the universal cover of S\{a0, . . . , an−1}, but we prefer to consider
f as a multi-valued function with branching at the singularities. One
can write f = w1/w2 where w1 and w2 are two linearly independent
solutions of the Heun equation, a Fuchsian equation with four singu-
larities. These four singularities are the singularities of the metric, and
the angles at the singularities are 2π times the exponent differences.
Heun’s equation can be written as

(1) w′′ +

(

2
∑

j=0

1− αj

z − aj

)

w′ +
Az − q

(z − a0)(z − a1)(z − a2)
w = 0,

where the singularities are a0, a1, a2,∞, the angles are 2παj, 0 ≤ j ≤ 3,
and

A = (2 + α3 − α0 − α1 − α2)(2− α3 − α0 − α1 − α2)/4.

Three singularities can be placed at arbitrary points, so one can choose,
for example (a0, a1, a2) = (0, 1, t). So for given singularities and angles,
the set of Heun’s equations essentially depends on 2 parameters: t
which describes the quadruple of singularities up to conformal equiva-
lence, and q which is called the accessory parameter.
The metric and the differential equation (1) can be lifted to a torus

via the two-sheeted covering ramified over the four singular points.
Assuming that the singularities are at e1, e2, e3,∞, where e1+e2+e3 =
0, we consider the Weierstrass function

℘ : C → S,

with primitive periods ω1, ω2. We denote ω0 = 0, ω3 = ω1 + ω2, then
ej = ℘(ωj/2), 1 ≤ j ≤ 3. The resulting differential equation is called
the Heun equation in the elliptic form:

(2) w′′ =

(

3
∑

j=0

kj℘(z − ωj/2) + λ

)

w, kj = α2

j − 1/4.

The two parameters are now the modulus of the torus τ = ω2/ω1 and
the accessory parameter λ. The relation between q and λ is affine:
λ = aq+ b with a and b depending on τ . The precise form of a and b is
irrelevant here, but we will use the fact that they are both real when
aj and αj are real. The details of calculation reducing (1) to (2) are
given in [24].
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We will use both forms of the Heun equation. Equation (2) is con-
sidered on the torus (not on the plane). In particular the monodromy
includes the translations of solutions by the elements of the lattice.
The ratio of two solutions f = w1/w2 is a developing map of a

metric in question if and only if the projective monodromy group of
the Heun equation is conjugate to a subgroup of PSU(2) ≃ SO(3). In
this case we say that the monodromy is unitarizable. The exponents
at the singularity ωj/2 are ρ±j = 1/2 ±

√

1/4 + kj , so the angle at

this singularity is 4π
√

1/4 + kj, which is 4παj, twice the angle of the
original metric on the sphere.
The problem is for given ω1, ω2 and kj > −1/4, 0 ≤ j ≤ 3, to find

the values of λ for which the monodromy is unitarizable.

2. Statement and discussion of results

The main result of this paper is

Theorem 1. For every τ and kj > −1/4, 0 ≤ j ≤ 3, the set

U := {λ ∈ C : equation (2) has unitarizable projective monodromy}
is finite.

The correspondence between the metrics and Heun’s equations is
not one-to-one: different pairs of linearly independent solutions of the
same equation may correspond to different metrics. This can only
happen when the projective monodromy is co-axial that is isomorphic
to a subgroup of the unit circle. We say that a metric is co-axial if the
monodromy of its developing map is co-axial. Co-axial metrics come in
continuous families consisting of equivalent metrics: two metrics with
developing maps f1, f2 are called equivalent if f1 = φ ◦ f2 for some
linear-fractional transformation φ. When the projective monodromy
is trivial there is a real 3-parametric family of metrics, and when the
projective monodromy is a non-trivial subgroup of the circle there is a
real 1-parametric family of metrics, see for example [7].
Co-axial metrics on the sphere have been completely described in

[9]; in particular, when n ≥ 3 some angles of a co-axial metric must be
integer multiples of 2π. So Theorem 1 has the following

Corollary 1. For every four points a0, . . . , a3 on the Riemann sphere
and every αj ∈ R+\Z, there exist at most finitely many metrics of
curvature 1 and conic singularities at aj with angles 2παj.

Whether a metric on the sphere is co-axial or not is completely de-
termined by the angles [17, Theorem A]. The only co-axial metrics on
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surfaces of genus g ≥ 1 are metrics on tori with all angles multiples of
2π [18, Theorem 2.1].

Corollary 2. For every non-integer α, and every torus, there are at
most finitely many metrics of curvature 1 and one conic singularity
with angle α on this torus.

Indeed, the developing map of such a metric is a ratio of two linearly
independent solutions of (2) with k1 = k2 = k3 = 0.
It follows from the results of Chen and Lin [6] that the number

of metrics on a torus with one singularity with angle α is at least
[(α− 1)/2] + 1 unless α is an odd integer.
Unfortunately, our proof is non-constructive, and does not give any

explicit upper estimate for the number of metrics. The proof of Theo-
rem 1 consists of two parts: first we prove that the set U is bounded;
this part is based on the asymptotic analysis of equation (2) as λ → ∞.
Compactness of the set of metrics with prescribed angles in the given

conformal class has been proved in [18] for metrics on arbitrary compact
Riemann surfaces with any number of singularities, and for generic
angles. For the case of 4 singularities on the sphere the condition on
the angles in [18] is the following:

None of the sums
∑

3

j=0
±αj is an even non-zero integer.

This result also follows from [3, Corollary 3] and [4, Corollary 2.5]
with proofs based on a different method.
The second part of our proof shows that the set of accessory param-

eters defining unitarizable monodromy is discrete. A general theorem
of Luo [13] implies that equations with unitarizable monodromy corre-
spond to a real analytic surface in the complex two dimensional space
of all Heun’s equations with prescribed exponents. Assigning the po-
sition of singularities means that we take the intersection of this real
analytic surface with a complex line. In general, such an intersection
does not have to be discrete.
Finding the accessory parameters corresponding to unitarizable mon-

odromy requires solving a system of equations of the form

(3) gj(λ) = 0, j = 1, 2,

where λ is a complex variable and gj(λ) are real harmonic functions,
and there is no general method of proving that the set of solutions of
(3) is discrete, or to estimate the number of solutions from above. See
[12], [5] where a very special case is solved.
To investigate equation (3) in our case, we use a general theorem

of Stephenson [23] which reduces the local question about discreteness
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of the set of solutions of (3) to a question about asymptotic behavior
at infinity of entire functions (traces of the generators of monodromy),
and this question is solved using the asymptotic behavior established
in the first part of the proof and a theorem of Baker [1] on compositions
of entire functions.
It is the use of Stephenson’s theorem that prevents our method from

working for n > 4. In general, the set U as in Theorem 1 is defined as
a common zero set of 2n− 6 real harmonic functions:

gj(λ) = 0, 1 ≤ j ≤ 2n− 6

of n−3 complex variables λ = (λ1, . . . , λn−3). When n = 4 we have two
harmonic functions of one complex variable. If the set of common zeros
is not discrete, it must be unbounded. This permits to use asymptotics
as λ → ∞ to obtain a contradiction. But when n > 4, the set of 2n−6
real harmonic equations in n − 3 variables may have a bounded non-
discrete set of solutions, so our argument does not work.
Nevertheless we state the following

Conjecture. On any compact Riemann surface, the set of Fuchsian
equations with prescribed singularities and exponents, and with unita-
rizable monodromy is finite.

The problem considered here is somewhat similar to the accessory
parameter problem studied by Klein and Poincaré; see [20] for a mod-
ern exposition of their work. They tried to prove that there is a unique
choice of accessory parameters such that the ratio of solutions of a
Fuchsian differential equation is the inverse to the uniformizing map
of S minus the punctures. They did not succeed in proving the Uni-
formzation theorem with this approach, but the proof based on these
ideas is completed in [20]. It is interesting to notice that Poincaré did
obtain a complete proof for the case of the sphere with four punctures
[19]. This work of Poincaré was continued by V. I. Smirnov [21], [22]
whose argument is used in Section 3 below. The main differences be-
tween our problem and the problem of Klein and Poincaré is that our
problem may have more than one solution, and that the monodromy
group in our case is not discrete.
The author thanks Walter Bergweiler, Chang-Shou Lin, Andrei Gab-

rielov, and Vitaly Tarasov for useful discussions and comments.
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3. Asymptotics of traces of monodromy generators and

boundedness of U

Let z0 be a point such that no singularities of equation (2) lie on the
lines

Lj = {z0 + tωj : t ∈ R}, j = 1, 2.

We restrict equation (2) on the line Lj and obtain an equation with pe-
riodic analytic potential with period ωj. Let Tj(λ) be the monodromy
transformation corresponding to the translation by ωj. Then the well-
known result [15], [25, Theorem 1] says that the trace trTj is an even

entire function of
√
λ with the following asymptotic behavior:

(4)

trTj(λ) = (2 +O(1/λ)) cosh(ωj

√
λ), λ → ∞, | arg(ω2λ)| < π − ǫ,

for every ǫ > 0. These traces are usually called Hill’s discriminants
or Lyapunov’s functions in the literature on the Sturm-Liouville equa-
tions.
If the monodromy is unitarizable, both traces must satisfy

trTj(λ) ∈ [−2, 2],

which is inconsistent with (4) for large λ since the ratio ω2/ω1 is not
real. This proves that the set U in Theorem 1 is bounded.

4. The real case

To prove discreteness of the set U we first address the real case: we
assume that (a0, a1, a2) = (0, 1, t), in (1) and that t and q are real.
Here we essentially follow Smirnov [21], [22], who investigated the case
of SL(2,R) monodromy and αj < 1.
We only consider the case when none of the αj in (1) is an integer.

For the case of at least one integer αj our result was proved in [11].
We assume without loss of generality that t < 0. Let w01, w02 be

solutions of (1) normalized at 0 by

w0j(z) = zρ0j(1 + g0j(z)),

ρ0j are the exponents at 0, ρ00 = 0, ρ01 = α0, and g0j are holomorphic
and vanish at 0. Here and in what follows we use the principal branches
of powers. These two solutions w0j are real on (0, 1). We also consider
two solutions w11, w12 which are normalized at 1 and both are real on
(0, 1):

w1j(z) = (1− z)ρ1j(1 + g1j(z)), z ∈ (1− ǫ, 1),

where g1j is analytic near 1, g1j(1) = 0, and ρ1j are the exponents at
1, ρ11 = α1, ρ12 = 0.
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Then we have the connection matrix

F =

(

f11 f12
f21 f22

)

,

such that

w0 = Fw1, where wi =

(

wi1

wi2

)

, i ∈ {0, 1}.

The entries of F are entire functions of the accessory parameter q, real
on the real line, see [21], [22]. To obtain the projective monodromy,
we consider fi = wi1/wi2, i ∈ {0, 1}, which are related by a linear-
fractional transformation f0 = L(f1) which is represented by the matrix
F . Projective monodromy of f0 at 0 is an elliptic transformation with
fixed points 0 and∞. Since we assume that none of the αj is an integer,
the local monodromy at the singularities is not identical. Monodromy
of f0 at z = 1 is an elliptic transformation with fixed points u1 = f11/f21
and u2 = f12/f22. These points are real. Projective monodromies at
0 and 1 are simultaneously unitarizable if and only if the product of
these fixed points is negative. Indeed, an elliptic transformation is a
rotation of the Riemann sphere if and only if its fixed points u1, u2 are
diametrally opposite, that is

(5) u1u2 = −1.

In our case both u1, u2 are real so the bar can be dropped. Choosing
the fixed points of projective monodromy at 0 to be 0,∞, we still can
multiply f0 by a constant µ. This will result in multiplying both fixed
points of the projective monodromy at 1 by µ, so (5) can be achieved
for these fixed points if and only if u1u2 < 0.
Similar considerations apply to the interval (t, 0). If we denote the

connection matrix on (t, 0) by

G =

(

g11 g12
g21 g22

)

,

then gij are entire functions on q, real on the real line, and the fixed
points of the projective monodromy of f0 at t are v1 = g11/g21 and
v2 = g12/g22.
So the condition of unitarizability is

(6)
f11f12
f21f22

=
g11g12
g21g22

< 0.

This includes the condition that two meromorphic functions of q take
equal values, so the set of q satisfying this condition is discrete, unless
the equality in (6) is satisfied identically.
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To show that the equation in (6) cannot be satisfied identically in q,
one can use the asymptotics of solutions for large λ, but an easier way
is to see this is directly from the Heun equation in the form (1), which
in our case can be written as

w′′ + p(z)w′ + q(z)w = 0,

where

q(z) =
Az − q

z(z − 1)(z − t)
, t < 0.

When q is large negative, q(z) is large negative on (0, 1), so solutions
oscillate on (0, 1), and functions fij have infinitely many positive zeros,
while on the interval (t, 0) we have q(z) > 0, solutions do not oscillate,
and functions gij have no large positive zeros. Thus (6) cannot hold
identically, and the set of real q for which the monodromy is unitariz-
able is discrete.

5. Completion of the proof of Theorem 1

To prove the second part of Theorem 1, discreteness of the set U ,
we consider two entire functions λ 7→ trTj(λ) introduced in section 2.
They are the traces of the generators of the monodromy corresponding
to the periods ω1, ω2.
If for some λ the monodromy is unitarizable, then trTj(λ) ∈ [−2, 2],

so if the set of such λ is not discrete, there is a non-degenerate curve
γ such that both trTj are real on γ.
Now we use the following

Theorem of Stephenson [21, Thm. 13]. Let gj, j = 1, 2 be two entire
functions which are both real on a non-degenerate curve γ. Then

(7) gj = Gj ◦ φ,
where φ, Gj are entire, Gj are real on the real line, and φ is real on γ.

Recalling the asymptotics (4) we obtain

(8) gj(λ) := trTj(λ) ∼ 2 cosh(
√

ω2
jλ), λ → ∞, | argω2λ| ≤ π− ǫ.

These two functions have two different directions of maximal growth
and their zeros have arguments accumulating in the directions opposite
to the directions of maximal growth. To be more precise, we say that
an entire function g has a single direction of maximal growth θ if for
every ǫ > 0 there exists δ > 0 such that for all r > r0 we have

max{|g(reit)| : θ + ǫ ≤ t ≤ θ + 2π − ǫ} ≤ (1− δ){max |g(z)| : |z| = r}.
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Each of our functions gj, j = 1, 2, has a single direction of maximal
growth θj = arg(ω−2

j ), and these directions are distinct because ω1/ω2

is not real. It follows that Gj in (7) cannot be polynomials, and φ
cannot be a polynomial of degree greater than 1. Now we use

Theorem of Baker [1]. If an entire function g of finite order has a
representation (7) with some entire transcendental functions G and all
zeros of g except finitely many lie in a sector of opening less than π,
then φ must be a polynomial of degree 1.

From this we conclude that the curve γ in Stephenson’s theorem
must be an interval of a straight line ℓ, and both gj are symmetric with
respect to this line, that is gj ◦ s = gj, where s is the reflection with
respect to ℓ. Comparing this with asymptotics (8) we conclude that
the directions of maximal growth of the gj must be collinear, and since
they are distinct, they must be opposite, which gives ω1 = iω2. So our
torus must be rectangular. In terms of equation (1), this means that
the singularities are real. This implies that our functions gj are real on
the real line.
Now we prove that ℓ is the real line. First ℓ cannot cross the real line,

because a function with two lines of symmetry will have at least two di-
rections of maximal growth, while our functions have only one. Second,
it cannot be parallel to the real line, because in this case our functions
gj would be periodic which is incompatible with their asymptotics (8).
This reduces the general case to the real case considered in the pre-

vious section and completes the proof of Theorem 1.
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théorie des fonctions automorphes, Bull. sci. math., 45 (1921) 93–120, 126–135.

[22] V. I. Smirnov, Inversion problem for a second-order linear differential equation
with four singular points (Russian), Petrograd, 1918; reprinted in the book:
V. I. Smirnov, Selected works. Analytic theory of differential equations, St.
Petersburg Univ., St. Petersburg, 1996.

[23] K. Stephenson, Analytic functions sharing level curves and tracts, Ann. Math.,
123 (1986) 107–144.

[24] K. Takemura, The Heun equation and the Calogero–Moser–Sutherland sys-
tem II: perturbation and algebraic solution, Electronic journal of differential
equations, 2004, 15, 1–30.

[25] V. A. Tkachenko, Discriminants and generic spectra of non-selfadjoint Hill’s
operators, in the book: V. A. Marchenko, ed., Spectral operator theory and
related topics, Adv. Soviet Math., AMS 19 (1994) 41–71.

[26] M. Troyanov, Metrics of constant curvature on a sphere with two conical sin-
gularities, Lecture Notes in Math., 1410, Springer, Berlin, 1989, p. 296–306.



METRICS WITH 4 CONIC SINGULARITIES 11

Purdue University, West Lafayette, IN 47907 USA
eremenko@math.purdue.edu


