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In this course we study boundary value problems for PDE. The main
method is called Harmonic analysis a. k. a. Fourier Analysis. The main
idea is that one can analyze a function by breaking it into simple parts.

Example. A function f defined on the real line is called even if f(x) = f(−x)
for all x. It is called odd if f(x) = −f(−x) for all x. The only function which
is simultaneously even and odd is the zero function.

For every function f , the function fe(x) = (f(x) + f(−x))/2 is even, and
the function fo(x) = (f(x)− f(−x))/2 is odd. Since we have

f = f0 + fe,

every function can be represented as a sum of an even function and an odd
function. Moreover, this representation is unique.

A function defined on the real line is called periodic with period T 6= 0 if

f(x+ T ) = f(x) for all x.

If f has period T then it also has periods nT , for every integer n. For a
constant function, all numbers are periods. If f is not constant, continuous
and periodic, then there exists the smallest positive period T and all other
periods are nT , where n is any integer.

The simplest real periodic functions are cos and sin, but if we allow
complex-valued functions, then there is even a simpler one

eix = cosx+ i sinx,

whose smallest positive period is 2π. To obtain a similar function with period
2L we take

eix/L = cos(πx/L) + i sin(πx/L).
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What do we mean by “simplest” here? This has a precise answer: these
functions behave in a very simple way when we differentiate them, especially
the exponential: (d/dx)eλx = λex, in other words the exponential is an
eigenfunction of the differentiation operator.

The simplest setting of Harmonic Analysis is the theory of Fourier series
which gives an expansion of a periodic function f with period 2L into a
Fourier series of the form

f(x) =
∞∑

n=−∞
cn exp

(
iπnx

L

)
,

where cn are complex constants. We will frequently take L = π to simplify
our formulas; it must be clear how to modify them for arbitrary period.

So suppose that we have a 2π-periodic function which has an expansion
of the form

f(x) =
∞∑

n=−∞
cne

inx. (1)

How can one determine these constants cn (they are called Fourier coeffi-
cients) for given f? There is a simple recipe: multiply both sides on e−imx

and integrate over the period 2π. Assuming that the series can be integrated
term-by-term, we use

∫ π

−π
einxe−imxdx =

∫ π

−π
ei(n−m)x =

{
0, m 6= n
2π, m = n.

Using these relations, we obtain

cn =
1

2π

∫ π

−π
f(x)e−inxdx, −∞ < n <∞. (2)

These formulas (1), (2) define the special case of Fourier transform: to a
function with period 2π we put into correspondence a two-sided sequence of
complex numbers (cn) by formula (2) and (presumably) the function can be
recovered from this sequence by formula (1).

Of course, all this needs a mathematical justification: why integral in
(2) exists? If it exists, why the series (1) is convergent, and in what exact
sense? If it is convergent, why its sum is f? And why we can integrate it
term-by-term to obtain (2)? All this has to be justified, and a precise class
of functions has to be defined for which all these arguments work.
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Since Fourier’s original discoveries, these questions always occupied math-
ematicians, and research on these questions continues. The modern defini-
tions of the basic mathematical notions, like “function” and “integral” and
“convergence” actually developed in the process of this research.

Some basic facts are the following. Suppose that f is 2π-periodic and
piecewise smooth. Then the Fourier series of f exists and converges at
every point x to the value (f(x− 0) + f(x+ 0))/2.

In particular, at all points x where f is continuous, the Fourier series
converges to f(x).

Moreover, once we have an expansion (1), the numbers cn must be defined
by formulas (2); in other words, Fourier expansion is unique.

For the proof and precise definition of “piecewise smooth”, see Section
2.2 of the book. More advanced theorems on Fourier correspondence will be
discussed later.

All of the above applies to functions of the real variable which can take
complex values. Let us see what happens if the function f is real (takes only
real values). This case is of course important in applications. The condition
that f is real, can be stated as f = f . Applying complex conjugation to all
terms of (1) we obtain

f(x) =
∞∑

n=−∞
cne
−inx.

Since the LHS’s of this formula and (1) are equal, the RHS’s must be also
equal, and this implies that cn = c−n for all n, since the Fourier coefficients
are uniquely determined by f .

Now let cn = An + iBn, where An and Bn are real, then the condition
cn = c−n means that An = A−n and B−n = −Bn. Writing the general term
of the Fourier series as

(An+iBn))(cosnx+i sinnx) = An cosnx−Bn sinnx+i(An sinnx+Bn cosnx),

we can group each summand with n with the one with −n, then all imaginary
terms in (1) will cancel (as it should be!) and we obtain

f(x) = A0 +
∞∑
n=1

(2An cosnx− 2Bn sinnx) .

For (2) we will have

An + iBn =
1

2π

∫ π

−π
f(x)(cosnx− i sinnx)dx,
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so, since f is assumed real,

An =
1

2π

∫ π

−π
f(x) cosnxdx, Bn = − 1

2π

∫
f(x) sinnxdx.

It is convenient to define an = 2An and bn = −2Bn, and with these notation
we obtain Fourier formulas for real functions:

f(x) =
a0
2

+
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx, (3)

where

an =
1

π

∫ π

−π
f(x) cosnx dx, bn =

1

π

∫ π

−π
f(x) sinnx dx. (4)

These were the original formulas of Fourier. The reason of writing the con-
stant term as a0/2 is that we have a unified formula (4) for an for all n,
including n = 0. Notice that for n = 0 we have

a0
2

=
1

2π

∫ π

−π
f(x)dx,

the average of f over the period.

Notice that the first two summands in the RHS of (3) are even while the
last term is odd. So we obtained a decomposition of a real function into
the even and odd part which was addressed in the beginning of this text, in
terms of Fourier series:

fe(x) =
a0
2

+
∞∑
n=1

an cosnx,

fo(x) =
∞∑
n=1

bn sinnx,

where an, bn are defined in (4)

Example. Suppose that

x+ 1 =
a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx) , −π < x < π

. What is the sum of the series in the RHS for x = π?
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Solution. To obtain an expansion on the whole real line, we need to extend
f periodically, with period 2π. We do not know the values of this extension
at the odd multiples of π. But they are irrelevant in Fourier formulas (4), so
the right hand side does not depend of them. No matter how f(π) and f(−π)
are defined, the function is piecewise smooth, and the Convergence theorem
stated above must hold. Assording to this theorem, the RHS converges at
the point π to the value (f̃(π − 0) + f̃(π + 0))/2 where f̃ is the 2π-periodic
extension of f . This value is equal to ((π + 1) + (−π + 1))/2 = 1.

Example. Suppose that we have the Fourier expansion

xex =
a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx) ,−π < x < π.

Find a0, and

S(x) :=
∞∑
n=1

bn sinnx, −π < x < π.

Solution. a0 is twice the average:

a0 =
1

π

∫ π

−π
xexdx = (π − 1)eπ + (π + 1)e−π.

And S is the odd part of our function:

S(x) = (xex − (−x)e−x)/2 = x coshx.

Of course one could compute all coefficients bn by formulas (4) and then find
the sum of the series, but this is much more difficult.
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