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1. Definition and heuristic arguments. Let us write Fourier expansion
of a function on an interval (−L,L) in the form

cn =

∫ L

−L
f(x)e−iπnx/Ldx, −∞ < n <∞, (1)

f(x) =
1

2L

∞∑
−∞

cne
iπnx/L, −L < x < L. (2)

In comparison with usual formulas, we shifted the multiple 1/(2L) from the
first formula to the second.

Denote sn = πn/L, ∆s = sn+1 − sn = π/L, and introduce a function
F (sn) = cn; then 1/(2L) = ∆s/(2π), and our formulas become

F (sn) =

∫ L

−L
f(x)e−isnxdx,

f(x) =
1

2π

∞∑
−∞

F (sn)eisnx∆s.

We can use the first formula to define F for all values of s, not only for sn,
then the second formula becomes an integral sum for some integral. Then
we let L→∞ in which case ∆s→ 0, and the integral sums may be expected
to converge to the integral. This is a heuristic justification of the following
definition:

F (s) =

∫ ∞
−∞

f(x)e−isxdx. (3)
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This is called the Fourier transform of f . And we expect the following
inversion formula

f(x) =
1

2π

∫ ∞
−∞

F (s)eisxds. (4)

Now we have to discuss the conditions for which these formulas make sense
and are true.

First of all, the integral in (3) must be convergent. A sufficient condition
for this is f ∈ L1, that is

‖f‖1 :=

∫ ∞
−∞
|f(x)|dx <∞.

Second, we need the integral (4) to be convergent (it is not true that F ∈ L1

for every f ∈ L1, as seen from the examples below), and if it makes sense,
we have to prove that it is really equal to f .

Before discussing this, we establish some formal properties, assuming that
both Fourier transform and the inverse transform are well defined.

We will use the following notation: if F is a Fourier transform of f , we will
denote it by F = f̂ , or by F [f ], whichever is more convenient. Notice that
a function and its Fourier transform are functions of different variables, so
these variables have to be denoted by different letters when they occur in the
same formula. Fourier transform and the inverse transform are very similar,
so to each property of Fourier transform corresponds the dual property of the
inverse transform.

2. Properties of Fourier transform.

1. Fourier transform is linear:

F [af + bg] = aF [f ] + bF [g].

2. Fourier transform of a shifted function:

F [f(x− a)] = e−iasf̂(s), and F [eiaxf(x)] = f̂(s− a).

3. For a function f and a real number δ ≥ 0, we define fδ(x) = δ−1f(x/δ).
A justification of this definition is that∫ ∞

−∞
fδ(x)dx =

∫ ∞
−∞

f(x)dx,
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by the change of the variable x/δ = y. So this is a scaling which does not
change the integral. Then

F [fδ] = f̂(δs), and F [f(δx)] = f̂δ.

4. If f is differentiable and f ′ ∈ L1, then

F [f ′] = isf̂(s),

and if xf(x) ∈ L1 then
F [xf(x)] = if̂ ′(s).

The first formula is proved by integration by parts, and the second by differ-
entiation under the integral sign.

Applications to differential equations are based on this property 4: Fourier
transform transforms differentiation to multiplication on the independent
variable.

The following examples are very important and will be used later:

Example 1. Let χa(x) = 1/(2a) when |x| ≤ a and χa(x) = 0 otherwise,
Then

F [χa](s) =
1

2a

∫ a

−a
e−isxdx =

sin(as)

as
, a > 0.

Remark. Notation χa is consistent with the scaling introduced above: χa(x) =
(1/a)χ1(x/a).

Example 2.

F [e−ax
2/2] =

√
2π

a
e−s

2/(2a), a > 0. (5)

See the handout “Some definite integrals” where this is discussed.
Here is another approach to this formula, based on property 4 of Fourier

transform. Let y(x) = exp(−ax2/2). Then

y′ = −axy.

Taking Fourier transform of both sides, and using property 4, we obtain

isŷ = −iaŷ′, that is ŷ′ = −(s/a)ŷ.

Solving the last differential equation, we obtain

ŷ = C(a)e−s
2/(2a).
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To determine the constant C(a), we plug s = 0 to the formula

ŷ(s) =

∫ ∞
−∞

e−ax
2/2e−isxdx = C(a)e−s

2/(2a)

and use the result that ∫ ∞
−∞

e−ax
2/2dx =

√
2π

a
,

proved in the handout “Some definite integrals”.
Putting a = 1 in (5) we obtain that

f(x) = e−x
2/2 has Fourier transform

√
2πe−s

2/2, (6)

in other words, it is an eigenfunction of the Fourier operator F with eigen-
value

√
2π.

Formula (6) is very important, and it is recommended for memorizing.
The general formula (5) can be obtained from it by the scaling rule (property
3 in the list of the properties of Fourier transform with δ = 1/

√
a).

Example 3.

F [e−a|x|] =
2a

s2 + a2
, F [(x2 + a2)−1] =

π

a
e−a|s|.

This is left as an exercise: for the first formula, just break the integral
into two parts. The second formula follows by duality.

Exercise. Prove the formulas

ˆ̂
f(x) = 2πf(−x), and ˆ̄f(s) =

¯̂
f(−s).

The next important property of Fourier transform is related to

3. Convolution.

Let f and g be two functions on the real line. We define their convolution
f ? g as the function

(f ? g)(x) =

∫ ∞
−∞

f(x− y)g(y)dy,
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assuming that the integral is absolutely convergent. For example, this will
be the case if one function is in L1 while the other is bounded. Or if both
functions are in L2.

Exercise. Prove the last statement by using the Cauchy–Schwarz inequality.

To understand what this operation really does, consider the example in
which g(y) = χa(y) = 1/(2a), when |x| ≤ a and 0 otherwise. Then

(f ? χa)(x) =
1

2a

∫ a

−a
f(x− y)dy =

1

2a

∫ x+a

x−a
f(y)dy,

so f ? χa is the “moving average”: its value at the point x is the average
of f over the interval of length 2a centered at x. Similar interpretation has
a convolution with any positive function g ∈ L1: it is a constant times are
moving weighted average with weight g.

We state the main properties of convolution.

1. Convolution is commutative: f ? g = g ? f . Indeed,

(f ? g)(x) =

∫
f(x− y)g(y)dy =

∫
g(x− t)f(t)dt = (g ? f)(x),

where we made the change of the variable y = x− t.

2. Convolution is associative:

(f ? g) ? h = f ? (g ? h).

This is also proved by a change of the variable in the integral.

3. Convolution is linear with respect to each argument:

f ? (ag1 + bg2) = af ? g1 + bf ? g2,

and similarly with respect to f .

4. If one of the functions is continuous and has bounded support1, then the
convolution is defined and is is continuous; if one of the functions is n times
continuously differentiable and has bounded support, then the convolution is

1Support of a function is the set where it is different from 0.
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n times continuously differentiable. Roughly speaking convolution is at least
as good as the better of the two functions. This is proved by differentiation
under the integral sign. The requirement of bounded support can be relaxed
by assuming sufficiently fast decrease at infinity, so that all integrals are
convergent.

Property 4 can be used to approximate arbitrary functions by smooth
functions.

Example. Show that there is an infinitely differentiable function which is
positive on the positive ray and zero on the negative ray. For example,

f(x) =

{
e−1/x, x > 0,
0, x ≤ 0.

One only has to check that it is infinitely differentiable at 0, and all derivatives
“from the right” at 0 are equal to 0. For x > 0, we have

f ′(x) = x−2e−1/x, f ′′(x) = (−2x−3 + x−4)e−1/x,

and so on. It is easy to see that f (n) is of the form: a rational function times
exp(−1/x). All these functions tend to 0 as x→ 0.

Now the function g(x) = cf(x)f(1 − x) is non-negative, equals to zero
outside of the interval (−1, 1) and is infinitely differentiable; and we choose
the constant c in such a way that integral of g over the whole real line equals 1.
Then also ∫

gδ(x)dx =

∫
g(x)dx = 1 for all δ > 0,

where gδ(x) = δ−1g(x/δ).
Now, if f is any continuous function, then f ? gδ is well defined, infinitely

differentiable, and tends to f as δ → 0 pointwise.

Exercise. Prove the last statement.

Now we state one of the main properties of the Fourier transform:

Theorem. Fourier transform of a convolution is the product of Fourier
transforms:

F [f ? g] = f̂ ĝ.

And we have the dual property:

F [fg] =
1

2π
f̂ ? ĝ.
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Proof.

F [f ? g] =

∫
e−isx

∫
f(x− y)g(y)dydx

=

∫
f(x− y)e−is(x−y)dxg(y)e−isydy = f̂(s)ĝ(s),

where we used the fact that shift of a function does not change its integral
over the real line. The proof of the dual property is similar.

Now we briefly discuss two approaches to a rigorous definition of Fourier
transform and the proof of the inversion formula.

4. Schwartz’s space.

By definition, it consists of infinitely differentiable functions which de-
crease sufficiently fast at infinity, so that

sup
R
f (n)(x)(1 + |x|m) <∞ for all positive integers m,n.

Evidently, such functions make a vector space. Examples of such functions
are infinitely differentiable functions with bounded support which we con-
structed earlier. Another important example is e−ax

2
, a > 0.

The set of all such functions is called the Schwartz space and denoted by
S . (This is a fancy Latin letter “S”, in honor of Laurent Schwartz). This
definition is inspired by property 4 of Fourier transform: you can multiply
f ∈ S on xm and differentiate any number of times, the Fourier transform
will be differentiated and multiplied by powers of s, and the integrals defining
Fourier transform will be always convergent. The formal properties are:

Fourier transform maps S into itself, and this map is one-to-one.

Fourier Inversion formula holds for functions of class S .

Proof. First we verify the identity∫ ∞
∞

f(x)ĝ(x)dx =

∫ ∞
−∞

f̂(x)g(x)dx, (7)

which holds for any two functions of class S . To prove the (7), it is sufficient
to notice that both sides are equal to the double integral∫ ∞

−∞

∫ ∞
−∞

f(x)e−ixyg(y)dxdy.
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Now we apply this identity to a function f ∈ S with

g(δ, x) =
1

2π
e−δx

2

,

whose Fourier transform is

F [g(δ, x)] =
1

δ
√

2π
e−x

2/2δ2 ,

according to Example 2 with a = 2δ. As δ → 0, the LHS of (7) tends to f(0)
while in the RHS e−δx

2 → 1, so

f(0) =
1

2π

∫ ∞
−∞

f̂(x)dx.

This established the inversion formula for x = 0.
Applying property 2 of Fourier transform we obtain the inversion formula

in full generality. Since both Fourier transform and the inversion formula are
defined for all functions of S , Fourier correspondence on S is one-to-one.

So class S is very convenient, for Fourier transform. Its disadvantage
is that it contains too few functions. Many important functions are not
infinitely smooth, but only piecewise smooth (for example the function χa
that we considered above), other functions do not tend to zero sufficiently
fast (like Example 3 above: f is not continuously differentiable, while f̂ does
not decrease sufficiently fast.)

5. Space L2.

It consists of all functions on the real line with the property

‖f‖22 :=

∫ ∞
−∞
|f(x)|2dx <∞,

and the dot product is defined by the formula

(f, g) =

∫ ∞
−∞

f(x)g(x)dx,

the last integral is convergent by the Cauchy–Schwarz inequality. It turns
our that Fourier transform just multiplies the dot product by a constant. To
verify this, we use the formula which follows immediately from the definition
of Fourier transform:

ˆ̄g(s) = ĝ(−s).
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Now

2π(f, g) = 2πF [fg](0) = (f̂ ? ˆ̄g)(0) = (f̂ ¯̂g(−s))(0) = (f̂ , ĝ).

In particular,
2π‖f‖22 = ‖f̂‖22. (8)

This is a Fourier Transform analog of the Parseval formula in the theory of
Fourier series. In the context of Fourier transform on the real line, (8) is
called the Plancherel formula.

So once Fourier transform and the inversion formula is established for
some nice functions, like class S functions, one can extend it to all L2-
limits. One can show that functions of class S are dense in L2, that is every
function in L2 can be approximated in the sense of L2 distance by functions
of class S . This shows that

Fourier transform is a one-to-one map of L2 onto itself. It multiplies the
norm of every function by

√
2π.

Plancherel’s formula shows that all distances are scaled by
√

2π under
Fourier transform, and all angles are preserved.

These two methods of defining Fourier transform, in class S or in L2 still
do not have all desired properties. For example, none of these classes contains
periodic functions. So some further extension is needed. An ingenuous way to
do this was invented by Laurent Schwartz (not to be confused with Hermann
Amandus Schwarz of the Cauchy–Schwarz inequality!). We will address this
is one of the future lectures.

6. Real functions. One-sided real Fourier transforms.

In many applications, function f is real, and it is sometimes useful to
rewrite our formulas so that they involve real functions only.

Suppose that f is even. Then we can break the Fourier integral into two
parts:

f̂(s) =

∫ ∞
−∞

f(x)e−isxdx

=

∫ ∞
0

f(x)
(
e−isx + eisx

)
dx = 2

∫ ∞
0

f(x) cos(sx)dx.
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The last integral is called the cosine Fourier transform. Notice that it is also
even since cosine is even.

Similarly, if f is odd,

f̂(s) = −2i

∫ ∞
0

f(x) sin(sx)dx =: −iS(s),

where S is called the sine Fourier transform. Let us denote the cosine trans-
form by C[f ] and sine transform by S[f ]. If f is real, they are also real.

Then we can use the inversion formula. In the case of even functions

f(x) =
1

2π

∫ ∞
−∞

f̂(s)eisxds

=
1

π

∫ ∞
−∞

C[f ]eisxds =
1

π

∫ ∞
0

C[f ](s) cos(sx)ds.

and similarly for S[f ]:

f(x) =
1

π

∫ ∞
−∞

S[f ](s) sin(sx)ds.

So we have real formulas which can be used for functions defined on the
positive ray, or for even (and odd) functions defined on the whole real line.

7. Poisson’s Summation Formula.

Suppose we have a function f of class S . I recall that this means that it
is infinitely differentiable, and all derivatives tend to 0 faster than any power
as x→ ±∞.

One can make a periodic function with period 1 out of f in the following
way

f1(x) =
∞∑
−∞

f(x+ n),

this is sometimes called the periodization of f . The series is convergent since
f tends to zero faster than any power.

There is another way to produce a periodic function from f : in the inverse
Fourier transform

f(2πx) =
1

2π

∫ ∞
−∞

f̂(s)e2πisxds
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replace the integral by the sum over the arithmetic progression 2πn and
multiply by 2π:

f2(x) :=
∞∑
−∞

f̂(2πn)e2πinx.

The series is convergent because f̂ ∈ S , and evidently f2 is periodic with
period 1. It turns out that these two methods of periodization give the same
result: f1 = f2.

Theorem (Poisson’s summation formula). For f ∈ S ,

∞∑
−∞

f(x+ n) =
∞∑
−∞

f̂(2πn)e2πinx.

Proof. Both sides are periodic with period 1. So to check the equality,
it is sufficient to check that Fourier coefficients of both sides coincide. The
RHS is already a Fourier series, so Fourier coefficients are f̂(2πn). For the
LHS we have∫ 1

0

(
∞∑
−∞

f(x+ n)

)
e−2πinxdx =

∞∑
−∞

∫ 1

0

f(x+ n)e−2πinxdx

=
∞∑
−∞

∫ n+1

n

f(y)e−2πinydy =

∫ ∞
∞

f(y)e−2πinydy = f̂(2πn).

Putting x = 0 we obtain the identity

∞∑
−∞

f(n) =
∞∑
−∞

f̂(2πn).

Taking f(x) = exp(−ax2/2) (Example 2 above), we obtain

∞∑
−∞

e−an
2/2 =

√
2π

a

∞∑
−∞

e−2π
2n2/a, a > 0.

This is useful when we want to compute the LHS approximately when a is
very small: when a→ 0+, the series in the LHS becomes divergent. But the
terms of the series in the RHS become very small. So LHS∼

√
2π/a, a→

0 + . See “ Age of the Earth, 2” where this is used.

11



Exercise. Derive a more general formula:
∞∑
−∞

f(x+ nT ) =
1

T

∞∑
−∞

f̂(2πn/T )e2πinx/T .

Heisenberg’s inequality.

Let f ∈ S , be a function such that ‖f‖2 = 1. Then∫ ∞
−∞

x2|f(x)|2dx
∫ ∞
−∞

s2|f̂(s)|2ds ≥ π

2
.

Proof. By integration by parts we obtain

1 =

∫ ∞
−∞
|f(x)|2dx = −

∫ ∞
−∞

x
d

dx
|f(x)|2dx

= −
∫ ∞
−∞

(
xf ′(x)f(x) + xf(x)f ′(x)

)
dx,

where we used |f |2 = ff . So

1 ≤ 2

∫ ∞
−∞
|x||f(x)||f ′(x)|dx.

Applying Cauchy-Schwarz inequality we obtain

1 ≤ 4‖xf(x)‖2‖f ′‖2.

On the other hand, by property 4 of Fourier transform and Plancherel’s
formula,

‖f ′‖2 =
1

2π
‖F [f ′]‖2 =

1

2π
‖sf̂(x)‖2,

and we obtain our inequality.

Exercise 1. Take f(x) = e−xs0g(x+ x0), where g ∈ S , ‖g‖ = 1, and obtain
a more general inequality:∫ ∞

−∞
(x− x0)2|g(x)|2dx

∫ ∞
−∞

(s− s0)2|ĝ(s)|2ds ≥ π

2
,

which holds for all g ∈ S with ‖g‖ = 1 and all real s0, x0.

Exercise 2. Find when equality holds in Heisenberg’s inequality. Hint:
when does equality hold in Cauchy–Schwarz inequality?
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