NAME_____

Student ID_____

1. (10 pts) Find a Fourier series for

$$f(x) = \begin{cases} \sin \theta, & \text{if } 0 \le \theta \le \pi \\ \theta, & \text{if } -\pi \le \theta < 0 \end{cases}$$

2. (5 pts) Find the sum of the Fourier series in Problem 1 at $\theta = 0, \pi/2, \pi$.

3. (10 pts) Find the best approximation in $L^2(0,\pi)$ to $f(x)=\cos x$ by a linear combination of $\sin x$, $\sin 2x$, $\sin 3x$.

4. (10 pts) Represent

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^6}$$

as an integral of a polynomial over $[0,\pi].$ Do NOT evaluate the integral.

5. (10 pts) Use identity $(\theta^4)'' = 12 \theta^2$ to find a Fourier series for $f(\theta) = \theta^4$.

6. (15 pts) Solve $u_t = u_{xx} + e^{-t} \sin x$ for $x \in [0, \pi]$ and $t \ge 0$ with the boundary conditions $u(0,t) = u(\pi,t) = 0$ and initial condition $u(x,0) = \sin 2x$.

Hint: $(te^{-t})' = e^{-t} - te^{-t}$.