
Some applications of Legendre and Hermite
polynomials

A. Eremenko

March 30, 2021

1. Gauss quadrature formula.

We discuss numerical evaluation of integrals. A linear quadrature formula
approximates an integral of a function over an interval (a, b) by a linear
combination of values of this function at some points, which are called the
nodes: ∫ b

a
f(x)dx ≈

n∑
j=0

ajf(xj). (1)

For example, a simple approximation is obtained if we take equally spaced
nodes

xj = a + j(b− a)/n, j = 0, . . . , n,

and approximate f on the j-th interval by f(xj). This corresponds to taking
aj = (b− a)/n in (1).

The word “linear” means that for any two functions, if the integral of f
is approximated by A and the integral of g is approximated by B then the
integral of a linear combination c1f + c2g is approximated by c1A + c2B,
which is a very natural requirement.

The example given above can be improved (for example, by approximat-
ing the integral of f on small intervals not by the areas of rectangles but by
areas of trapezoids).

Exercise. What are the ak for the trapezoid formula?

So the question arises what is the “best” linear quadrature formula.
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Of course one has to specify exactly what does one mean by the best.
One formula may give better result for some functions, another for some
other functions.

Since every continuous function on a closed interval can be uniformly
approximated by polynomials, a very reasonable criterion is that the formula
gives exact result for polynomials, up to certain degree. The following result
is easy to prove:

Theorem. Let an interval [a, b] and n+ 1 nodes a ≤ x0 < x1 < . . . < xn ≤ b
be given. There exists a unique choice of a0, . . . , an such that the formula (1)
gives the exact result for all polynomials of degree at most n.

Proof. The formula is exact for polynomials of degree at most n if and
only if it is exact for all monomials of degree at most n. So we want∫ b

a
xkdx =

n∑
j=0

ajx
k
j , k = 0, . . . , n. (2)

The left hand side is
bk+1 − ak+1

k + 1
,

and we may consider (2) as a system of linear equations with respect to aj.
The determinant of this system is the familiar Vandermonde determinant
from Linear algebra, and it is not equal to zero. Therefore the system has a
unique solution which gives the required quadrature formula.

Exercise. Find an explicit solution aj of the system (2).

Hint. Consider the polynomials

ek(x) =

∏
j 6=k(x− xj)∏
j 6=k(xk − xj)

.

These are polynomials of degree n with the property ek(xk) = 1, and ek(xj) =
0, j 6= k. So for every polynomial P of degree at most n we have an interpo-
lation formula

P (x) =
n∑

k=0

f(xk)ek(x).

Use this fact to find an explicit expression of ak in the linear quadrature
formula which gives an exact answer for all polynomials of degree at most n.
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Now the question is: can we do better than that? The answer is: we
should do better, because we have not optimized the choice of the nodes yet;
the Theorem above holds for any choice of the nodes. There must be some
choices of the nodes, which will allow to write a quadrature formula which is
exact for polynomials of higher degree. The remarkable solution was found
by Gauss. Assume for simplicity that [a, b] = [−1, 1]; this does not restrict
generality.

It turns out that the optimal choice of xk is the zeros of Legendre’s poly-
nomial of degree n + 1. (I wanted to put an exclamation sign (!) at the end
of the previous sentence, but could not in fear that it might be confused with
the factorial).

Theorem (Gauss). Let x0, x1, . . . , xn be the zeros of Legendre’s polynomial
Pn+1. Then here is a linear quadrature formula∫ 1

−1
f(x)dx ≈

n∑
k=0

akf(xk) (3)

which is exact for all polynomials of degree at most 2n + 1.

Proof. Let P be a polynomial of degree at most 2n + 1. Divide it with
remainder by the Legendre polynomials Pn+1:

P = QPn+1 + R, degR ≤ n. (4)

It is easy to see that degQ ≤ n, since the degrees are added when polynomials
are multiplied. Then∫ 1

−1
P (x)dx =

∫ 1

−1
Q(x)Pn+1(x)dx +

∫ 1

−1
R(x)dx.

The first integral is zero. Indeed, Pn+1 is orthogonal to all Legendre poly-
nomials of smaller degrees, therefore it is orthogonal to all polynomials of
degree at most n.

Now choose the zeros of Pn+1 as our nodes, and find for them the coeffi-
cients aj according to Theorem 1. Then we have∫ 1

−1
P (x)dx =

∫ 1

−1
R(x)dx =

n∑
k=0

akR(xj)

since degR ≤ n. But on the other hand, it is clear that P (xj) = R(xj) which
is seen by plugging xj to (4) and taking into account that Pn+1(xj) = 0 by
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definition! So we obtain ∫ 1

−1
P (x)dx =

n∑
k=0

akP (xk),

as advertised.

Gauss quadrature formula is actually used for evaluation of integrals by
computers.

2. Application of Hermite polynomials: harmonic oscillator in
quantum mechanics.

In classical mechanics, a harmonic oscillator, or linear pendulum is a
system described by the differential equation

y′′ + ω2y = 0,

which models phenomena like small oscillations a load on a spring, small
oscillations of a pendulum, or oscillations of current and voltage in a simple
electric oscillator. A basis of solutions consists of cos(ωt) and sin(ωt).

Quantum-mechanical analog of this system is described by the eigenvalue
problem for the differential equation

y′′(x) + (E − x2)y(x) = 0, (5)

with boundary conditions

y ∈ L2(−∞,+∞). (6)

The problem is usual: to find all values of E for which such a non-trivial
solution exists. The physical meaning of eigenvalues Ek is the energy levels,
and eigenfunctions y are the “wave functions” which describe the state of the
system.

We will reduce (5) to Hermite’s equation by a simple change of the vari-
able y = P (x)e−x

2/2:

y′ = (P ′ − xP )e−x
2/2,

y′′ = (P ′′ − xP ′ − P − xP ′ + x2P )e−x
2/2,

so P satisfies
P ′′ − 2xP ′ + (E − 1)P = 0,
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and in view of the boundary condition, for y, we see that P ∈ L2
w(−∞,+∞),

where w(x) = e−x
2
. Indeed

‖P‖2w =
∫ ∞
−∞
|P (x)|2e−x2

dx =
∫ ∞
−∞
|y(x)|2dx.

So the boundary conditions for the Hermite equation are satisfied and we
conclude that En = 2n + 1 for some n = 0, 1, 2, . . . .

Equation (5) also arises in the separation of variables for the Laplace
equaton in parabolic coordinates (s, t) which are related to the rectangular
coordinates (x, y) in the plane by formulas

x = s2 − t2, y = 2st.

The level lines s = c and t = c are parabolas with focus at the oprigin. For
the details, see pp. 188–189 of the book.
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