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of Finite Lower Order
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A. E. EREMENKO

For a function f meromorphic in the finite plane C let

Bla, f) = lim mM(r,(f —a)™")/T(r,f),  a# oo,

r—00

and

ﬂ(oo’f) = h_m lnM(ra f)/T(T, f)

r—00
Here and below we use the standard notation from the theory of meromorphic
functions [1].

Several papers in recent years have dealt with the study of convergence for
series ), 6%(a, f), a < 1, for meromorphic functions of finite lower order. The
strongest result in this direction is due to Weitsman [2], who proved that if f is
a meromorphic function of finite lower order, then

> 6'3(a, f) < oo. (0.1)

Hayman ([1] §4.3) proved that the series Y, 6!/3¢(a, f) can diverge for any
£ > 0. A detailed history of the problem is given in [2]. The quantities ((a, f)
(they are called the deviation values) were systematically studied by Petrenko
[3], who proved, in particular, that

1

1/2 —-1/2—¢

for any € > 0 for functions of finite lower order [4].
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In the present paper we prove the

THEOREM. Let f be a meromorphic function of finite lower order. Then

Y B"2(a, f) < oo. (02)

This relation was conjectured in [3]. The theorem was announced by Bar-
segyan in Akad. Nauk Armyan. SSR Dokl. 67 (1978), no. 5. According to a
letter from him, his proof contained a gap.

It is easy to deduce (0.1) from (0.2). Indeed, let

0(r,a) = meas{f € [0, 2n):In |f(re®®) —a|~ > In7}, aeC.

For any finite colection a4, ...,aq € C the inequality Ej 6(r,a;) < 27 holds for
sufficiently large . On the other hand, it is easy to see that

6(aj, f) < 0(r,a;)B(aj, f) +o(1), 7 — oo.
By Hoélder’s inequality,

84, 1) < (2m) 72 (0 82(a, 1))

Therefore, (0.1) follows from (0.2).

Our theorem is sharp in the following sense. First, examples are known of
meromorphic function of infinite lower order such that 8(a, f) > 0 for uncount-
able sets of numbers a € C ([3], p. 82). Second, analysis of known examples
([3], p. 47) shows that for any sequence (7,) of numbers with 7, > 0 and
Y1 Nn = 1 there is a meromorphic function of normal type of order 1 such that
B(an, f) > n2 /4, where (a,) C C is a previously specified sequence.

Needed auxiliary results are given in §1, and the theorem is proved in §2.

1. LEMMA 1. Let f be a meromorphic function, and let a € C. Then
f'(z)
f(z)—a
where I C (0,00) is such that meas(I N (0,r)).= o(r), r — oco.

log* =o(T(12lz],f)),  z— oo, |2| &1,

This lemma is a variant of Lemma 1.4.1 in [3]. We omit the simple proof,
which is based on differentiation of the Schwarz-Jensen formula.

Let D(R) = {2:|2| < R}, and let u > 0 be the difference of two functions
subharmonic on D(R) and continuous on D(R). Such functions will be called
admissible in what follows. The generalized Laplacian Au is a signed measure
with Jordan decomposition pf — u; . We use the notation

M(rv u) = mg’xu(rew)a n(r, u) = MJ(D(R))v
N(r,u)z/orn(t,u)%, 0<r<R.

For an admissible function u we consider the open set D = {z € D(R): u(z) >
0}. Let g(z,¢, D) denote the function defined as follows. If z lies in the same
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component of D as ¢, then g(z,¢, D) is the (positive) Green’s function of this
component with pole at ¢. In all the remaining cases g(z, ¢, D) = 0. Denote by
u(+, D) a function harmonic in D with u(z, D) = u(z), z € D(R)\D. The Riesz
representation

u(z) = u(z D) + /D o(z ¢, D)d(u — ) (L1)

is valid for an admissible function u in D(R).
Denote by D* the circular symmetrization of the open set D, i.e., the open
set such that

meas{D N {z: |z| = r}} = meas{D* N {z:|z| = r}},

where D* N {z:|z] = r} is either the whole circle or an arc whose midpoint
lies on the positive ray. For any measurable function ¢ on [—m, 7| define the
symmetrization ©* as the monotonically decreasing function of 9|, 6 € [—, 7],
such that
meas{0: p(0) > t} = meas{0: p*(6) > t}

for any t € R. Let u*(-,D*) be defined as follows: u*(-, D*) is harmonic on
D* and equal to 0 on D(R)\D*, and u*(Re®, D*) = (u(Re®))*. The function
u*(-, D*) is admissible.

LEMMA 2. 1°. Ifu is an admissible function on D(R), D = {z € D(R): u(z)
> 0}, then

M(rvu('vD)) ZM(T,U*(-,D;))ZU*(T,D*), 0<r<R
2°. M(r,g(:,¢, D)) < M(r,g(-,[¢|, D*)) = g(r, [¢|, DT), 0 < r < R.

Assertion 1° follows from Theorem 7 of Baernstein in [5], and 2° is Theorem
5 in the same paper.

Denote by c(u) the circular projection of the measure u on the positive ray.
Lemma 2 gives us

LEMMA 3. Suppose that the admissible function u has the form (1.1). Then
M(r,u) < M(r,u*) =u*(r), r<R, n(r,u) = n(r,u*), r<R, (1.2)
where

w(@) =@ DY+ [ gles, D)delis).

Note that u* = 0 in D(R)\D*, and that u* is superharmonic in D* and
subharmonic off the positive ray.

LEMMA 4. Suppose that u is an admissible function,

IERU(Z) <1, (1.3)
u, (D) < oo. (1.4)

Let v(z) = min{u(z),2}. Then n(R,v) = n(R,u).
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PROOF. Let D; = {z € D:u(z) > 2}. By (1.3) and the fact that u(z) =0
for 2 € 3D N D(R), we have that D; C D. Let D, be an open set with smooth
boundary T' such that D; C Dy and D, C D. Obviously, u(z) = v(z) in a
neigborhood of I'. By Green’s theorem,

i (D2) = [ Geds =z (Do) (15)

in D(R)\D; we have that u(z) = v(z); therefore
py (D(R)\D2) = py (D(R)\Ds),
which together with (1.5) proves the lemma.

LEMMA 5. Let (vk) be a sequence of admissible functions with the properties
that

n(R,vx) <A (A does not depend on k), (1.6)
wu(r)>k>0, R/8<r<R,r¢&Xk, (1.7)

meas X — 0, k — 0o, and k does not depend on k. Then M(r,vx) > /2, R/4
<r < R/2, for sufficiently large k.

PROOF. We prove the lemma by contradiction. Suppose that (1.6) and (1.7)
hold, and that there is a sequence 7, € [R/4, R/2| such that

M (rk,vk) < k/2. (1.8)
Consider the new sequence of functions

2 Tk K\t
we) = (v (32) - 3)
It follows from (1.8), (1.7), and (1.6) that

wi(26%%) = 0, (1.9)
wi(r)>1, 1<r<2 rgY, measY, — 0, k—oo, (1.10)
n(3,wx) < A. (1.11)

Without loss of generality it can be assumed that the wy are harmonic in G =
D(2)\[1,2]. Indeed, if we replace wy in G by the solution to the Dirichlet problem
with boundary data wy, then the conditions (1.9)-(1.11) are not violated. We
next assume that the wy are harmonic in G. Denote by w(z,a) the harmonic
measure of an arc o C G in G. For any continuous function u let

E(r,u) = 2—1— /21r u(re'®) df.
T Jo
It follows from (1.10) that
we(2) 2 w(z, ([1,2]\Y)) = w(z,[1,2]) - w(z, Yi) = wi(2) —wzk(2), |2 <2.
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For any ¢ > 0 we have that wy(2) — 0 as k — oo uniformly with respect
to z for € < |arg| < . Therefore, E(r,w2 k) — 0 uniformly for 0 < r < 2.
Consequently,

E(r,wg) > E(r,w;1) + o(1), k— oo (1.12)
uniformly with respect to r. For w;(2) there is an explicit expression
2 -l _4=z-1)
2 —¢l’ 4-z
From this an uncomplicated direct computation gives us that

2 .
wi(z) = —arcsin

. d
hm0 ;—TE(r,wl) = —00. (1.13)

r—2—
It follows from (1.9) that E(2,wy) = 0. Considering (1.12) and (1.13), we get
that
. . rd
lim lim —
k—oor—2—0 dr
However, by Green’s formula, we get from (1.11) that

E(r,wg) = —o00.

;—(:E(r, wi) = n(r, —wk) — n(r,wk) > —n(r,wi)
2 _n(3, wk) Z -A

for r < 2. This contradiction proves the lemma.

Let I'; and I’y be two simple Jordan curves joining the circles of the annulus
{2:1 < |z| < 2}. Denote by S one of the curvilinear quadrangles bounded by
these curves and arcs of the circles of the annulus. There is a unique conformal
and univalent mapping of the domain S onto some rectangle @ = {¢ = & +
m:|€] < 2, |p| < 6} with the curves I'; and I'; going into the horizontal sides
|n| = £6, and with the circular arcs going into the vertical sides.

LEMMA 6. § <2|S| < 6n, where |S| is the area of the region S.

This is a variant of a known theorem of Grotzsch.
PROOF. Let p: Q — S be the mapping function. Then

2 2 2
1< / olde, 1< 4 / wirde, 2 <4 [ |odedn=4is)
-2 -2 —2

as required.
Let w(¢) be a superharmonic function continuous on @ such that 0 <
w(x2 +1n) <2 for |n| <6, and w(€ £16) =0 for |£| < 2 and 6 < 6.

LEMMA 7. Let M(§) = max,w(é+1m) > & > 0, |§] < 1. Then & <

A(bpug(Q) + 62), where A is an absolute constant.

PROOF. We represent w as the sum of a harmonic function h on @ and a
Green’s potential p. If || < 1, then it is not hard to get the estimate

h(s) < Arexp(—A2/6) < A36%,  Re¢=¢, (1.14)

where A;, Az, and A3 are absolute constants.
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For the potential we have that
o) = [ ot @z < | ole.Ret, Q)di,

where g is the Green’s function. Denote by I1(§) the horizontal strip {¢:|Im¢| <
6} and let M;(§) = max, p(§ + 1n). We have that

/;11 My (§)d€ < /—11 dg/Qg(E,Ret,H(é))d”;
= /Qdu; /_ Z 9(£,0,T1(5)) d¢

~ 6@ [ " 06,0, TI(1)) de, (L15)

because g(6¢,0,II(1)) = g(&,0,I1(6)). The last integral in (1.15) obviously con-
verges and is an absolute constant. By (1.14) and (1.15),

1 1
k< / M(€)d€ < As6® + / Mi(€) d < A(ug(Q) + 62),
-1 -1

which is what we were required to prove.
2. PROOF OF THEOREM. Without loss of generality it can be assumed that
f(0) =1 and that N(r, f) ~ T(r, f), r — oo; consequently,

2T(r, f) S T(r, f') < 2T(2r, f) = 2T'(2r).

It is known ([3], p. 64) that for functions of finite lower order the series __ B(a, f)
converges; therefore, for the proof it can be assumed that the numbers 3(a) =
B(a, f) are sufficiently small. Further, if the lower order A of f is equal to 0,
then the relation 3(a, f) > 0 can hold for at most one value a € C ([3], p. 69).
Therefore, it will be assumed that A > 0.

There exist sequences r,, — oo and S,, — 0o such that

T(Srm) < S*1T(rp), 1< S < S (2.1)
The proof of the theorem is divided into several steps.

1°. By H. Cartan’s theorem ([1], Theorem 1.3) and by (2.1),

2n 1 27 1
/0 n (4rm, = te"P> dp < /0 N (12rm, = ew) dp + const
< log-+3 + (24 o(1))T(24r,0)

<A (log+ % + T(rm)> vt > 0.

Here and below, A denotes various constants depending only on . Let I(t)
be the total length of the level curves |f/(z)| = ¢ in the disk D(4r,,), and let
1 = exp(—T(rm)) and 2 = 1/2. According to the length and area principle

(6}, 2.1, o 1
L % < Ark, (log"’ = + T(rm)> .

2
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Therefore, there is an am, \/T(rm) < am < \/T(rm) + log2, such that
le7*) < Arpu /T (Tm)- (2.2)

Fix a finite collection of points a1, ...,aq € C, ¢ > 2, with min{|a;—a;|:¢ # 5} =
¢ > 0 and B(aj, f) > 0. We consider the set G, = {2:|2| < 4rm, log|f'(2)| <
—am}. Let Gjm, 1 < 7 < g, be the open set formed by the components G,
containing a point z; at which

|f(21) - a5] < c/4. (2.3)
Then

1£(2) — a5 < ¢/2 (24)
everywhere in Gjn,. Indeed, z € Gjn,. In the same component as z there is a

point z; for which (2.3) holds. By (2.2), there is a curve I' C G, joining z and
z; with length at most Ar,,\/T(rn,). On this curve, as everywhere in G,

|f'(2)] < exp(—am) < exp(—v/T(rm))-

Therefore, considering that A > 0, we get that

(&) ~f(a)l < /F 1(2)]ld2] < Aexp(—/Trm))rmy/Tlrm) = o(1), m — o0,

and (2.3) implies (2.4). In particular, the G;,, are pairwise disjoint.

2°. By Lemma 1 and (2.1), there is a set I, C [rm/2,47rm], meas I, = o(rym),
m — 00, such that

f'(z)
f(2) —a;
1<j5<4q, |2| € [rm/2,47m)\Im. We show that for any r € [rp, /2, 4rm]\Im there
is a point z with |z| = r such that z € G, and

log|f'(2)| < —AB(a;)T(rm). (2.6)

Indeed, since B(a;) > 0, for any r € [rm/2, 4ry] there is a point z with [z| = »
such that

log*

= o(T(rm)), m — 00, (2.5)

log |f(2) - aj| < —38(a;)T(r) < —~AB(a;)T(rm). (2.7)
This and (2.5) give us (2.6) for some point 2. By the definition of G,,, this point
is contained in G,,. Finally, by (2.4), it is contained precisely in Gjm.
We remark that G, cannot contain any circle {z:|z| = r}. This fact (which
is important for what follows) is a consequence of (2.4), (2.5) and the fact that
qg>2.

3°. By a theorem of Miles [7], the meromorphic function 1/f’ can be. rep-
resented as a quotient of two entire functions g; and g such that T(r,g;) <
A;T(Aar), 7 = 1,2, where A; and A, are absolute constants. Using this the-
orem and the known estimate of the maximal modulus of an entire function in
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terms of the characteristic, we get that —log|f’(2)| = t1(z) — t2(2), where t;
and to are subharmonic functions with

t;j(2) < AT(rm), |z| < 127p,. (2.8)
Let

1= max(t1,t2 + Olm), t3 = max(t1 - T(Tm), t2 + am),
Ym(2) = (T(rm) ") X (5 (rm2) — t3(rm2)), z € D(4).
Denote by Djn,, Dy, and X, the sets such that
Tijm = Gjma ™mDm = Gm, TmXm =In.

It is not hard to see that y,(2) = 0 if 2 € D(4) — Dy, ym(z) = 1if
log|f'(rm2)| < ~T(rm) — am, and ym(2) = T(rm)~!(=log|f! (rm2)| — om)
otherwise. Therefore

0<ym<1, 2€D(4), (2.9)
and it follows from (2.6) that
max_ ym(z) > AB(a,), ré€Xm, 1/2<r<4. (2.10)

|2|=7,2€Djm
Here and below, it is assumed in analogous inequalities that AB(a;) < 1. By
(2.8),
n(4,ym) = T(rm) " n(4rm, —t3) < (Trm) " 1N(12rm, —t3)
> T(Tm)—lM(12rm>t;) <A, (2.11)

where A does not depend on m.

Now let
v — Ym(2), 2 € Djm,
7m0, 2 € D(4)\Djm.
It follows from (2.10) that

M(r, ujm) > Aﬂ(a’j)a % <r<4, rg Xn, (2.12)
and it follows from (2.9) that
0 < wujm <1, z € D(4). (2.13)
Let pjm = n(4,u;jm). We get from (2.11) that
q
Y pim < n4,ym) < A. (2.14)
j=1

The functions u;, satisfy the conditions of Lemma 3 (take D;,, as D and R =
4). According to this lemma, we get functions u},, and regions D7, satisfying
the following conditions:

M(r,ujy,) > AB(a;), 1/2<r<4, r& Xp; (2.15)
n(4,45) < Py < 4 (2.16)
T w3 (2) < 1 (247)

Ui (2) =0, z € D(4)\D;,,,. (2.18)
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Inequality (2.15) follows from (2.12) and Lemma 3; (2.16) follows from (1.2);
(2.17) follows from (2.13); and (2.18) follows from the remark after Lemma 3.
By (2.15) and (2.16), the conditions of Lemma 5 hold (R = 4), and this lemma
enables us to replace (2.15) by

M(r,u},) > AB(a;), 1<r<2. (2.19)

Let us now consider the functions v, = min(u},,,2). We get from (2.19)

jm
that
M(r,vjm) > AB(aj), 1<r<2. (2.20)

By (2.16)—(2.18), conditions (1.3) and (1.4) of Lemma 4 are satisfied. This lemma
gives us that

n(4,Vjm) < Djm. (2.21)
We now observe that since the regions D;y, are disjoint,
q q
D |Djml = 3 IDjm| < 167 (222)
s=1 i=1

Further, none of the D;,, contains a circle about zero, as follows from the remark
at the end of 2°. Therefore, the regions D7, also do not contain such circles. It
follows from (2.20) and (2.18) that [1,2] C Dj,,; consequently, the sets Sjm =
D}, N{2:1 < |2| < 2} are connected. It is easy to see that the S, are simply
connected domains.

We map each domain S, conformally and univalently onto the rectangle
Qjm = {¢ = £+ m:|€| < 2;In| < é;m} as required in Lemma 6. According to
this lemma,

b6im < 2|Sjm| < 2|Df . (2.23)
Let ©jm:Qjm — Sjm be the conformal univalent mapping inverse to the indi-
cated mapping, and consider the composition wjm(¢) = Vjm(pjm(¢)). By the
definition of v, it follows that 0 < wjm < 2, and wjm (& +16;m) = 0; by (2.21),

Haym (Qim < Pjm, (2.24)

and, by (2.20),
max wjm (& + 1) > AB(a;), €] < 2.

Lemma 7 (with & = AB(a;)) together with (2.24) and (2.23) gives us that
ﬁ(a]') < A(éjmpjfﬁ + 6]2m) < 4A(1D;mlpjm + |D;m|2)'

From this, using (2.14), (2.22), and elementary inequalities, we deduce that

q q q
Y 8Y%(ay) < A IDjm| + Y pim < A.
=1 =1 =1

The theorem is proved.
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