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Consider a linear system

ẋ = Ax + Bu (1)

y = Cx (2)

Here A ∈ Mat(n × n), B ∈ Mat(n × p), C ∈ Mat(m × n) are real matri-
ces, x, u, y are functions of a real variable t with values in Rn,Rp and Rm,
respectively. The functions x, u, y are called the state, input and output,
respectively.

A static output feedback is an equation

u = Ky (3)

where K ∈ Mat(p × m).
Controlling the system by a static output feedback means that equations

(1),(2) and (3) are combined. Then y and u can be eliminated and we obtain

ẋ = (A + BKC)x, (4)

which is called the closed loop system. The eigenvalues of this closed loop
system are the roots of the characteristic polynomial

φK(z) = det(zI − A − BKC).

The pole placement problem is: for given A,B,C and given set {zj}
n
j=1

⊂ C,
symmetric with respect to the real line, to find real K so that the polynomial
φK has roots zj.

A less ambitious (and more important for engineering applications) is the
stabilizability problem: for given A,B,C, to find K so that all roots of φK lie
in the left half-plane.
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So the pole placement is equivalent to solving a system of equations with
respect to K

φK(zj) = 0, 1 ≤ j ≤ n. (5)

If this system is underdetermined, that is n < mp, it always has solutions for
generic A,B,C. This result of A. Wang is non-trivial because we are looking
for real solutions; existence of complex solutions is much easier.

Of course, this implies that a generic system of dimensions m,n, p with
mp > n is stabilizable.

From now on we assume that n = mp. In this case, the following is
known. If m and p are both even, there is an open set of systems (A,B,C)
for which the pole placement is unsolvable for some choice of {zj}. This is
the result of [2].

If m = p = 2 then there is an open set of systems (A,B,C) which are
not stabilizable [1].

The cases m = 1 and p = 1 are special; in these cases the system of
equations (5) is linear, and pole placement is possible for a generic system.

Question. For which m and p the generic system with n = mp is stabi-
lizable?

We recall a representation of φK which permits to give a geometric in-
terpretation to our question. Consider the rational matrix C(zI − A)−1B

which is called the transfer function of the system (1), (2). There exists a
factorization:

C(zI − A)−1B = D−1(z)N(z), det D(z) = det(zI − A),

where D and N are polynomial matrices of sizes m×m and m×p, respectively.
Using this factorization and the well-known property

det(I − AB) = det(I − BA)

for any rectangular matrices for which both sides are defined, we obtain

φK(z) = det(zI − A − BKC) = det(zI − A) det(I − (zI − A)−1BKC)

= det(zI − A) det(I − C(zI − A)−1BK)

= det(zI − A) det(I − D−1(z)N(z)K) = det(D(z) − N(z)K).

So the condition φK(z) = 0 can be written as
∣

∣

∣

∣

∣

D(z) N(z)
K I

∣

∣

∣

∣

∣

(6)
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which reveals that the pole placement equations (5) is a Schubert problem:
each equation (5) says that the p-space spanned by the rows of [K, I] inter-
sects n given m-spaces spanned by the rows of [D(zj), N(zk)].

When we consider generic solvability, it is useful to compactify both the
set of the systems considered and the set of admissible feedbacks. Instead of
[D,N ] we consider an arbitrary m × (m + p) polynomial matrix V (z) with
the following property:

The m × m minors do not have a common factor, and their maximal
degree is n.

We denote the set of such matrices V by Q(m,m + p). (Such matrices
correspond to the so-called “autoregressive systems” [3]. In other context
Q is known as a “quantum Grassmannian”. This is just the set of rational
maps from the projective line to the Grassmannian G(m,m + p) of degree
n = mp. This degree is the same as the degree of the curve in the projective
space obtained by the Plücker embedding of the Grassmannian).

Instead of [K, I] we consider an arbitrary element L of the Grassmannian
G(p,m + p), and the pole placement problem becomes

∣

∣

∣

∣

∣

V (z)
L

∣

∣

∣

∣

∣

= cφ(z).

where φ is a given polynomial and c 6= 0. The pole placement problem is
generically solvable if the pole placement map

L 7→

∣

∣

∣

∣

∣

V (z)
K

∣

∣

∣

∣

∣

, G(p,m + p) → Pn (7)

is surjective for every V ∈ Q(m,m + p).
Now we restate in the similar way the stabilizability problem.
A system V as above is called degenerate if there is L ∈ G(p,m + p) such

that the determinant in (7) is identically equal to 0. Anderson and Byrnes
[1] proved the following:

For given m and p (and n = mp), the generic system is stabilizable if
and only if for every non-degenerate V ∈ Q(m,m + p) the equation (7) with
φ(z) = zmp has a real solution.

They also gave the following counterexample for m = p = 2:

V (z) =

(

z2 1 z 0
z + 1 z2 1 z

)

.
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It is easy to see that deg V = 4, and that V is non-degenerate. Equation

det

(

V (z)
L

)

= cz4

can be explicitly solved with respect to L and the conclusion is that it has
no real solutions.

I am aware of no regular procedure which would permit to find such
examples. The question is for which m and p they exist.

The theorem of Anderson and Byrnes is easy to explain. Consider the
map (7) as a map

Q(m,m + p) × G(p,m + p) → Pmp. (8)

where Pmp is the set of non-zero polynomials of degree mp modulo propor-
tionality. The map is well defined on the non-degenerate subset of Q(m,m+
p) which is open and dense. We have the following SL(2) action on the
polynomials P of degree at most k:

P (z) 7→ (cz + d)kP

(

az + b

cz + d

)

, det

(

a b

c d

)

= 1.

This action naturally extends to Q(m,m+p). It is easy to see that for every
L our map (8) splits these two actions. So if for every V there is L such that
φL(z) = zmp, then for every V there is L such that φL(z) = (z + 1)mp, so
every V is stabilizable.

Now suppose that every V is stabilizable. This means that for every V

there exists L such that φL has all zeros in the left half-plane. Then, by
SL(2,R) action we conclude that for every V there is L such that all zeros of
φL belong to a given circle centered on the real line. By passing to the limit
(all our manifolds are compact!) we can move all zeros of φL to the point 0.
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