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A C2 function in a region D is called harmonic if it satisfies the Laplace
equation

∆u := uxx + uyy = 0.

Laplace equation makes sense in any dimension:

∆u := ux1,x1 + ux2,x2 + . . .+ uxn,xn = 0,

and it plays an important role in physics. One reason of this is that the
function

|x|2−n = (x2
1 + x2

2 + . . .+ x2
n)

1−n/2

is harmonic (check this!) in Rn\{0}. When n = 3 this function describes
electrostatic potential (Coulomb’s Law) and gravitational potential (New-
ton’s gravitation law) and many other things. In dimension 2 a similar role
is played by the function − log |z|, which is harmonic in C∗.

We will be concerned only with real-valued harmonic functions in regions
in the plane. The simplest physical interpretation is a stationary (time inde-
pendent) temperature in a thin plate.

Theorem. In any simply connected region in the plane, every harmonic
function is the real part of an analytic function f . This f is defined up to
addition of a pure imaginary constant.

Proof. Let u be a harmonic function. Consider the complex function

f = ux − iuy.

It is analytic since it satisfies the Cauchy–Riemann conditions (verify this!).
Since the domain is assumed to be simply connected, there exists a primitive
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F = U + iV.

We have F ′ = f , so F is analytic, and Ux = ux and Uy = −Vx = uy, therefore
U − u =: c is constant. So Re (F − c) = u.

The assumption that the region is simply connected is essential:

Exercise. Function u(z) = log |z| is harmonic in C∗, but it is not the real
part of any analytic function in C∗.

We use the notation D(a, r) = {z : |z−a| < r}, D(a, r) = {z : |z−a| ≤ r}
and ∂D(a, r) = {z : |z − a| = r} (oriented counterclockwise).

Average property. If D is a region, and u is harmonic in D, then for
every closed disk such that D(a, r) ⊂ D,

u(a) =
1

2π

∫ 2π

0
u(a+ reit)dt.

Physical interpretation: the temperature at any point of the plate equals
to the average of the temperatures over the boundary of a disk centered at
this point.

This follows from the similar property of analytic functions (which in turn
is the consequence of Cauchy’s integral formula) by taking the real parts.

As a corollary we obtain the further important properties

Maximum/Minimum Principle If a harmonic function has a (non-strict,
local) maximum or minimum at some point of the region of harmonicity, then
this function is constant.

Uniqueness Property If two functions are harmonic in a region D with
compact closure, continuous in D and coincide on ∂D, then they coincide
everywhere in D.

Indeed D is compact, so if we have two continuous functions in D, then
their difference must have a maximum and minimum in D. By the Maxi-
mum/Minimum Principle, they must be attained on ∂D, but if the functions
are equal on ∂D, these maximum and minimum are both 0.

The principal problem about harmonic functions is called the

Dirichlet Problem. Let D be a region, and a function ϕ is given on ∂D.
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Find a harmonic function u in D which takes the boundary values ϕ, that is

lim
z→ζ

u(z) = ϕ(ζ), for every ζ ∈ ∂D. (1)

Uniqueness property shows that for a continuous function ϕ and bounded
region D the Dirichlet problem has at most one solution.

We want to slightly generalize this fact, to deal with unbounded regions,
and some discontinuous functions.

First we notice that Maximum Principle can be restated as follows:

Proposition. Let u be a harmonic function in a region D with compact
closure, and suppose that

lim sup
z→ζ

u(z) ≤ 0, for all ζ ∈ ∂D.

Then u(z) ≤ 0 for all z in D.

Phragmén–Lindelöf Principle. Let D ⊂ C be a bounded region, and u is
a bounded harmonic function in D. Let a be a point on the boudary of D,
and suppose that

lim sup
z→ζ

u(z) ≤ 0 for all ζ ∈ ∂D\{a}. (2)

Then u ≤ 0 in D.

Proof. Without loss of generality we may assume that D is contained in
the unit disk and a = 0. For every ϵ > 0 consider the function

uϵ(z) = u(z) + ϵ log |z|.

Then uϵ satisfies the assumptions of the Proposition above, and thus uϵ(z) ≤
0 for all z ∈ D. Fixing ariitrary z ∈ D, pass to the limit when ϵ → 0, and
we obtain the required conclusion.

With a similar proof, one can relax the assumption, and require that (2)
holds for all boundary points of D, except finitely many. Then the same
conclusion holds.

We can also relax the condition that D is bounded: it is sufficient to
require that there is a conformal map of D onto a bounded region. For
example, the Phragmén–Lindelöf Principle applies to a half-plane.
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Out next task is to solve Dirichlet’s problem for simple regions, namely
disks and half-planes. We begin with the upper half-plane which we denote
by H.

For every real t, the function u(z) = Arg (z− t) is harmonic and bounded
in the upper half-plane and has these boundary values:

u(x) =

{
0, x > t,
π, x > t.

The limit as z → t does not exist. So, for t1 < t2,

ut1,t2(z) =
1

π
(Arg (z − t2)− Arg (z − t1))

tends to the characteristic function of the interval (t1, t2) as z tends to the
real line. If z = x+ iy, we can rewrite this function as

1

π

(
arctan

y

x− t2
− arctan

y

x− t1

)
=

y

π

∫ t2

t1

dt

(x− t)2 + y2
.

Now, by taking a linear combination of such functions, we can solve the
Dirichlet problem for any step function ϕ on the real line (of course, (1) will
hold only at the points of continuity of ϕ). Then, since every continuous
function ϕ with bounded support can be uniformly approximated by step
functions, we obtain the solution of Dirichlet’s problem for such functions ϕ
in the form

u(x+ iy) =
y

π

∫ ∞

−∞

ϕ(t)dt

(x− t)2 + y2
. (3)

The RHS is called the Poisson integral (for the upper half-plane). It is the
convolution of ϕ with the Poisson kernel

P (y, t) =
y

π(t2 + y2)
.

Poisson’s kernel has these three important properties:

a) P (y, t) > 0 for y > 0 and t ∈ R.

b)
∫
R P (y, t)dt = 1 for all y > 0.

c) For every δ > 0,

lim
y→0+

∫
|t|≥ϵ

P (y, t)dt = 0.
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One-parametric families of functions of t (here the parameter is y) are
called positive kernels. There is a general theorem about convolutions of
continuous functions with positive kernels.

Theorem. If P (y, t) is a positive kernel, and ϕ a bounded continuous func-
tion then the convolution

x 7→ u(x, y) =
∫ ∞

−∞
P (y, x− t)ϕ(t)dt (4)

tends to ϕ(x).

Proof. Using b) we write

ϕ(x) =
∫ ∞

−∞
P (y, x− t)ϕ(x)dt. (5)

Now continuity of ϕ means that for every ϵ > 0 there exists δ > 0 such
that |ϕ(t) − ϕ(x)| < ϵ for |x − t| < δ. Propsrties a) and c) imply that the
contribution to both integrals (4) and (5) from {t : |x− t| ≥ δ} tends to zero
as y → 0. So we have

|u(x, y)− ϕ(x)| ≤
∫
|x−t|<δ

P (y, x− t)|ϕ(t)− ϕ(x)|dt+ o(1) ≤ ϵ+ o(1).

This proves the theorem.

There are several ways to obtain an analogous result for the unit disk. For
example, one can use a conformal map of the disk to the upper hapfplane,
and using this map to make a change of the variable in the Poisson formula
(3). Another method is used in Ahlfors’ book. But it is simpler to find an
appropriate positive kernel for the unit disk, and refer to the Theorem above.

Function

S(z) =
1 + z

2π(1− z)

maps the unit disk onto the upper half-plane. By splitting it to the real and
imaginary parts we obtain

S(z) = P (z) + iQ(z) :=
1

2π

1− |z|2

|1− z|2
+ i

1

π

Im z

|1− z|2
.
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We claim that P (reit) is a positive kernel, where the parameter w is r ∈ (0, 1),
that is

a’) P (z) > 0 for |z| < 1,

b’)
∫ π
−π P (reit)dt = 1,

c’)
∫ 2π−ϵ
ϵ P (reit)dt → 0 as r → 1.

Compare with a), b), c) above. Property a’) is evident since ReS(z) > 0
by definition. To evaluate the integral in b’) we notice that such an integral
of Q is zero (function t 7→ Q(reit) is odd), so it is enough to evaluate the
integral of S.∫ π

−π
S(reit)dt =

1

π

∫
|z|=r

1 + z

1− z

dz

iz
=

1

2π
2πi res z=0

1 + z

iz(1− z)
= 1.

Finally property c’) is evident from the explicit expression of P . Using the
above Theorem we obtain the

Poisson’s Formula for the unit disk. Let ϕ be a continuous function on
the unit circle, then the function

u(z) =
1

2π

∫ π

−π

1− |z|2

|1− ze−it|2
ϕ(eit)dt =

1

2π

∫ π

−π

(1− r2)ϕ(eit)dt

1− 2r cos(t− θ) + r2
.

is harmonic in |z| < 1 and has boundary values ϕ(eit).

Now recall that an analytic function is defined by its real part, up to an
additive imaginary constant. So we obtain

Schwarz’s Formula for the unit disk. If f is analytic in a region con-
tainind |z| ≤ 1 then

f(z) =
1

2π

∫ π

−π

1 + ze−it

1− ze−it
.Re f(eit)dt+ iIm f(0).

Exercise. Prove the Poisson formula for the disk of radius R:

u(reiθ) =
1

2π

∫ π

−π

(R2 − r2)ϕ(Reit)

R2 − 2Rr cos(θ − t) + r2
.
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and the Schwarz formula for the disk of radius R:

f(z) =
1

2π

∫ π

−π

Reit + z

Reit − z
Re f(Reit)dt+ iIm f(0).

An important consequence is the estimate of the modulus of f in terms
of its real past. Let

M(r, f) = max
|z|=r

|f(z)|, and A(r, f) = max
|z|=r

|Re f(z)|.

If f is analytic in |z| ≤ R, and r ∈ (0, R), then we have

M(r, f) ≤ R + r

R− r
A(r, f) + |f(0)|.

This is called the Hadamard’s inequality.

Exercise. Prove that if u is a harmonic function in C and

u(z) = O(zd), z → ∞

for some integer d, then u is the real part of a polynomial of degree at most d.

Removable singularity theorem. Let u be a bounded harmonic function
in {z : 0 < |z| < R}. Then u extends to a harmonic function in the whole
disk.

Proof. Choose r ∈ (0, R) and let v be the solution of Dirichlet’s problem
for |z| < r with boundary values u(reit). Then u − v is bounded, and zero
on the boundary the ring 0 < |z| < r. So by Phragmén–Lindelöf Principlle,
it is zero identically.
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