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Walter Hayman was a leader in classical complex analysis for
several decades, and his 200+ publications, including 5 books,
cover almost all aspects of this vast subject.

So for this talk | have to choose only one part of his great output,
and based on my own scientific interests | choose the theory of
meromorphic functions.

When | met my adviser, A. A. Goldberg, for the first time, he
recommended me to read three books among which there was
Hayman's Meromorphic functions®. | read it since then, and my
opinion it is an unsurpassed example of mathematical exposition.
This opinion is probably shared by many others: the book has 1666
citations on Mathscinet!

!The other two were Wittich and Pélya-Szego.



The book has a dedication:

“To Rolf Nevanlinna, creator of the modern theory of meromorphic
functions”

This more or less defines the scope of my talk, so let me begin
with recalling the main notions of Nevanlinna theory.

Let f be a meromorphic function, and n(r,f) the number of poles
in |z| < r, counting multiplicity. Then

N(r, f) = /Or(n(t, £) — n(0, f))% + (0, f)log .

1 [ ;
m(r,f) = 277/ log™ |f(re®|do),

where at = max{0, a}, and
T(r,f):=m(r,f)+ N(r,f)

is the Nevanlinna characteristic.



A more intuitive definition is due to Ahlfors,
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Since T(r,f) = To(r,f)+ O(1), r — oo, we will not distinguish
T and Ty. Then we define
m(r,a) = m(r,(f —a)™t), N(r,a) = N(r,(f —a)}),
and the First Main Theorem of Nevanlinna says that
m(r,a)+ N(r,a) = T(r,f)+ O(1).

The Nevanlinna characteristic is an analog of degree of a rational
function in the transcendental case: for rational functions
T(r,f)=(d + o(1))log r, while for transcendental functions we
always have log r = o((T(r, f)).



The Second Main Theorem says that for any distinct ag,...,aq we
have

Q

Zm ryaj)+ Ni(r,f) <2T(r,f)+ S(r,f),
j=1

where N counts the critical points of f, and S(r, f) is the small
“error term”,

S(r,f)=O(log rT(r,f)), r—oo,r¢E,

where E is a set of finite length.

The appearance of exceptional sets in inequalities is a
characteristic feature of the theory (I think they appear for the first
time in the theory of Wiman-Valiron), and a natural question can
be asked whether they are really necessary.



This was answered by Hayman in 1972: For every increasing
sequence F, of compact sets of zero capacity, and any two
functions ®1, ®, tending to +oo, there exists an entire function f
and a sequence r, — 0o such that

N(rn,a,f) < ®1(rn), ac€Fy,

and
T(rn, f) > ®o(rm).

This was the first paper of Hayman that | read. It is interesting to
read Andre Bloch's speculations in his “La conception actuelle de
la théorie de fonctions entiéres et méromorphes (L'Ens. Math.,
1926) where he predicts such example from his philosophical
principles. One can even see in his speculations an anticipation of
Hayman's method of constructing this example, which consists of
approximation by f in a sequence of rings of a function in the unit
disk, the universal covering of the complement of F,.

From conversations with Walter | know that he never read this
paper of Bloch.



The main subject of this paper of Hayman is not the exceptional
set in the Second Main theorem but the set of Valiron deficiencies:

A(a, f) = limsup m(r, f).
r—oo  T(r,f)

It follows from the First Main theorem that 0 < A(a, f) < 1.
Ahlfors proved that the set of Valiron deficient values, those for
which A(a, f) > 0 has zero logarithmic capacity.
Hayman's result implies that every F, set of zero capacity can
occur, even for an entire function.
Valiron's deficiencies have no direct relation to the Second Main
theorem. To explore consequences of the Second Main theorem,
Nevanlinna introduced another notion of deficiency:

.. m(r,a)
d(a, f) = I|rr1!)r<1>f T )




Then the Second Main theorem implies that the set of deficient
values is at most countable, and the following defect relation holds:

> 6(a,f) <2

acC
The question arises whether one can say anything else about
deficiencies except this relation. This question is called the Inverse
Problem of value distribution theory. Until 1953 it was even
unknown whether the set of deficient values is finite, first such
example was constructed by A. A. Goldberg.
In the paper of Fuchs and Hayman (1962) the Inverse problem was
completely solved for entire functions: any deficiencies such that

25(3, f)1<1

aeC

can occur for entire functions.

For meromorphic functions, this problem was solved by Drasin in
1976, who showed that in general, nothing can be said except the
defect relation.



The most famous result of Hayman in the theory of meromorphic
functions (and perhaps the most famous of all his results) is what
is called Hayman's Alternative (Ann. Math., 1959).

A meromorphic function either takes every finite value infinitely
often, or every derivative takes every finite non-zero value infinitely
often.

In other words, the two conditions f(z) # a and f(")(z) # b,
where a € C, b€ C* and n > 1, then f = const.

Notice that Picard’s theorem has 3 conditions on omitted values
which imply that a function is constant, while this has only two.
Hayman's alternative is derived from a quantitative result:

T(r,f) < (2 + ,17> N(r,0) + (2 + i) N(r, 1, F(M) 4+ S, (r, f).



The proof of this consists of a formal algebraic manipulations with
Nevanlinna characteristics, and it makes an impression of pure
magic. It is exactly this feature which makes it possible to extend
this proof to other situations, see below.

| was never able to understand how one could find such a proof.
Besides the main result this paper of Hayman contains many other
results and conjectures which determined the development of the
subject for many years. Two most important conjectures were

Conjecture 1. If for a meromorphic function f, f and f” have no
zeros then f is an exponential or f(z) = (az + b)™".

Conjecture 2. For a transcendental meromorphic function f, ff’
takes every finite value infinitely many times.

Conjecture 1 was proved by Langley in 1993, and Conjecture 2 by
Bergweiler and Eremenko in 1995. Both proofs required
introduction of new methods, and many generalizations of these
theorems were obtained.



Despite an enormous number of papers which deals with
applications and generalizations of this theorem, the following
basic question remains unsolved.
The general philosophy is that in theorems of Picard type, the
condition that f omits a value can be replaced by the condition
that all a-points have sufficiently high multiplicity. So what exactly
are these multiplicities in Hayman's alternative?
Bergweiler and Langley (2005) proved that if all zeros of a
meromorphic function have multiplicities > m and 1-points of the
derivative have multiplicities > n, then

7 8

—+-<1
m n

implies that the function is constant.



However this is not best possible since Nevo, Pang and Zalcman,
proved in 2007 that

A meromorphic function whose all zeros are multiple and derivative
omits 1 must be constant.

This strengthens both the Hayman alternative and the result of
Bergweiler—Eremenko on Conjecture 2 mentioned above.

So the question about optimal multiplicities in Hayman's
alternative remains open. Same applies to Langley's theorem:
Suppose that all zeros of a meromorphic function have
multiplicities at least m and all zeros of f” have multiplicities at
least n. For which m and n one can conclude that (f/f")" is
constant?

(The differential operator at the end is the one that makes
exceptional functions in Langley’s theorem constant.)



Of all applications of Hayman's alternative, | will discuss only one,
which is the most striking one, on my opinion. This application is
to the conjecture of Wiman from the theory of entire functions,
which does not look related to the value distribution of
meromorphic functions.

Wiman's conjecture says that for a real entire function f, the
condition that all zeros of ff" are real implies that f is in the
Laguerre-Pdlya class (the closure of polynomials with all zeros
real).

This is now proved by a combined effort of several authors spread
over 1960-2003. The first breakthrough is due to Levin and
Ostrovskii (This was the subject of Ostrovski's PhD thesis and
Levin was his advisor).



The idea was that if ff” has only real zeros, then g :=f/f" is
meromorphic in the upper half-plane H and omits 0, and

g’ =1~ ff"/(f')? omits 1. This is similar to the assumptions of
the Hayman alternative, and one would like to derive some
estimate of g.

The first attempt to obtain an analog of Nevanlinna theory for
functions in a half-plane is due to Nevanlinna himself. He
exhausted the half-plane by semi-disks, and his definition of
characteristic consisted of three terms instead of two.
Unfortunately these characteristics proposed by Nevanlinna do not
share the main formal properties of the characteristics for the
plane. (A. A. Goldberg showed in 1975 that the analog of the
Lemma on the logarithmic derivative does not hold for Nevanlinna
characteristics in a half-plane).



A more useful generalization of Nevanlinna theory for the
half-plane is due to Levin-Ostrovskii and Tsuji. These are called
Tsuji characteristics and they are based on a generalization of the
Jensen formula for the exhaustion of the upper half-plane by the
horocycles

{z:|z—ir/2| <rj2.

Levin and Ostrovski proved that Tsuji characteristics possess all
algebraic properties of the usual Nevanlinna characteristics,
including the Lemma on the logarithmic derivative, and this
permitted them to generalize Hayman's alternative to functions in
the upper half-plane:

If g is meromorphic in the upper half-plane, has no zeros, and g’
has no 1-points, then the Tsuji characteristic satisfies
Z(r,f) = O(logr).



This paper of Levin and Ostrovski was the foundation of all
subsequent research on the Wiman conjecture (Hellerstein,
Williamson, Shen, Sheil-small, Bergweiler, Eremenko, Langley)
which culminated in the proof of this conjecture in 2005.

Let me also mention a related conjecture of Pdlya on repeated
differentiation. In a somewhat restated form it can be formulated
as an alternative:

For an arbitrary real entire function f, either all zeros of all f(") for
n > ng are real, or the number of non-real zeros of (") tends to oo
as n — oo.

The proof of this simple statement uses the Wiman conjecture, its
generalization by Langley to higher derivatives, and a new version
of the saddle point asymptotics inspired by another famous paper
of Hayman, Generalization of Stirling’s formula (1956).



Spherical derivative. Ahlfors’ definition of characteristic involves
the spherical derivative

4_ IF
1+ |f?

The meaning of this expression is the infinitesimal length distortion
when f is considered as a map from the plane with Euclidean
metric to the Riemann sphere with the spherical metric. (Common
normalization in Function theory assumes that the radius of the
sphere is 1/2, so the area is 7.) Then

™

1
A(r,f) = /||< (F7)? dxdy

is the average covering number of the sphere by the image of the
disk |z| < r, and the Ahlfors characteristic is

dt
.

To(r, ) = /OrA(t, )



It follows immediately from the definition that
f#(Z) = 0(|z|?) implies T(r,f)= O(r20+2)7

and it is easy to see that 20 + 2 is the optimal exponent (consider
a doubly periodic function, as a simple example).

It was an unexpected discovery of Hayman and Clunie, that for
functions f omitting one value, this estimate can be improved: the
same assumption implies T(r, f) = O(r°*1). This result confirms
a principle conjectured in 1950 by Littlewood that the measure
f#zdxdy for an entire function cannot be uniformly spread in the
plane: it is concentrated on a small subset. Look, for example at
f(z) = e* where most of this measure lies in a horizontal strip.



The original proof of Clunie and Hayman was rather complicated,
but now we have two very simple proofs: one is due to
Pommerenke (1970), another to Barrett and Eremenko (2012).
The authors of this last paper extend the result to holomorphic
curves in the complex projective space. Let f = (fy,...,f,) be
entire functions without zeros common to all of them. The
Nevanlinna characteristic is defined analogously to the Ahlfors
definition, where

2 —_
=07 Y If 66,

0<i<j<n



this is the square of the length distortion by f from the Euclidean
metric to the Fubini-Study metric in the complex projective space
of dimension n. Then the theorem of Barrett and Eremenko says
that

If f omits n hyperplanes in general position then f#(z) = O(|z|°)
implies T(r) = O(r*1).

When n = 1 we obtain the result of Clunie and Hayman.



A more striking generalization is due to da Costa and Duval. In
dimension 1 it says

If f is a meromorphic function with f# = O(r®) then

T(r) = N(r,a)+ O(rU+1).

To state their result in arbitrary dimension, we consider a
holomorphic curve f = (fy, ..., f,). Coordinates are assumed to be
entire functions without zeros common to all of them. Then for
every hyperplane a given by equation

aowp + ...+ aw, =0

the counting function n(r, a) is the number of zeros of the entire
function (a,f) = aofo + ...+ anfn in {z: |z| < r}, and N(r,a) is
defined in the usual way. Da Costa and Duval proved the following:



If a curve f satisfies f#* = O(r?) and omits n — 1 hyperplanes then
for any hyperplane a such that all n hyperplanes together are in
general position,

T(r,f)=N(r,a)+ O(r‘”‘l).

Without the assumption on omitted hyperplanes, they obtained
under the same condition that f# = O(r) that

(gq—n+1)T(r,f) §2Nraj o(r?+2),
j=1

which is meaningful only when T (t, f) # o(r?**2). This should be
compared with the weak Cartan’s Second Main theorem which has
(g—n—1)T(r,f) in the left hand side, but a much better error
term.

Whether one can prove the error term to O(r°*1) in this result of
Da Costa and Duval, is an interesting open problem.



Meromorphic functions and holomorphic curves in projective spaces
with uniform bounds on their spherical derivatives became an
important topic when Zalcman (1975) and Brody (1978) rescaling
lemmas were proved.

Another reason is that they make one of the important examples
for the theory of mean dimension of Gromov and Lindenstraus.



Derivatives. The question of relation between the asymptotic
behavior of a meromorphic function and its derivative, besides its
independent interest, is fundamental for Nevanlinna theory, where
the main technical tool is the Lemma on the Logarithmic

derivative:
m(r,f'/f) = S(r,f).

The question of comparison of T(r,f) and T(r, ') occupied
Hayman for many years, and the deepest available results on this
topic are contained in his three papers (1964, 1965, 1989), the last
one is joint with Joe Miles. The main results are the following.

1. If T(r,f) = O(log? r) then

This is best possible, but the lower estimate is attained on
f(z) = 22, and it is conjectured that for transcendental f the RHS
should be 1. (This is the case for transcendental entire f).



2. There exist entire functions with T(r,f) = O(¢(r)log?r) with
any ¢ — oo, and such that

T(r,f)/T(r,f) =0
on the set of r of infinite logarithmic measure.

This disproves a conjecture of Nevanlinna who hoped that
T(r,f")/T(r,f) greater than a positive constant, away from an an
exceptional set.

3. For all transcendental meromorphic functions and for all K > 1

() 1
T(r,f) = 2eK’

outside of a set of upper logarithmic density 6(K) < 1.



These remarkable results still do not exhaust the subject, for
example, the following old conjecture of Fuchs is still open:

For entire functions of order < 1/2, §(f'/f,0) =0

This is closely related to the statement that

lims T(rf) _
e T(r )

for all entire functions of order < 1/2.



