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Let D be a region in R
n with regular boundary for the Dirichlet problem.

Consider two properties of D:

PI. There exists a bounded temperature u(x, t) 6≡ 0

ut = ∆u, (x, t) ∈ D × [0, 1],

with the property

u(x, 1) ≡ 0, x ∈ D.

PII. There exists a harmonic function v(x) 6≡ 0 in D with the property

v(x) = O(exp(−|x|2)), x → ∞.

According to Gurarii and Matsaev [5], these properties are equivalent,
but no proof was ever published.

Here is a summary of known results.
When n = 1, both properties hold if and only if D is a bounded interval.

For PII this is evident, for PI this follows from the results of Tychonov [7].
When n = 2, and D is an angular sector {z : | arg z| < α}, the property

PII holds if and only if α < 45◦. Recently, Escauriaza showed that for such
sectors PI also holds. He actually proved that PII implies PI for cones. If v
is a harmonic function in a cone satisfying PII, then

u(x, t) = (t − 1)−n/2 exp(−|x|2/(4(t − 1)))v(x/(t − 1)), (x, t) ∈ D × (0, 1)

is a temperature with the property PII. This formula is a special case of the
Appell transform [4].

1



In the opposite direction, Li and Sverak [6] showed that PI cannot hold
in cones of revolution (in any dimension) with opening angle greater than
2 arccos(1/

√
3) ≈ 109.52◦.

The equivalence of properties PI and PII would be useful because PII is
much easier to verify for a given region. In dimension 2, Phragmén–Lindelöf
theorems give quite general geometric conditions for PII. If PII holds on a
region D0 ⊂ R

2, then it also holds for the wedge regions D0 × R
n−1 ⊂ R

n.
It is known that PII holds for cones of revolution in Rn if and only if the
opening angle is less than 90◦. For this and further results on the property
PII see [1, 2, 3].
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