
Is there anything else like the complex
numbers?

A. Eremenko

August 3, 2021

1. The following question is frequently asked in my office hours: What is
so special about complex numbers? Can one define a multiplication of vectors
in Rn so that a field is obtained ?

I recall what is a field. It is a set with two operations, addition and
multiplication, which have the “usual properties”, that is

• both operations are commutative and associative,

• there are elements 0 such that x + 0 = x for all x, and 1 such that
1x = x for all x, and 0 6= 1.

• both operations are invertible: for every x there is y such that x+y = 0
and for every x 6= 0 there is w such that xw = 1.

• distributive law holds: x(y + z) = xy + xz.

Examples of fields are: rational numbers Q, real numbers R, complex
numbers C.

There are many more examples, the simplest is the field which consists
of only two elements, 0 and 1. In this field 1 + 1 = 0, and 1 × 1 = 1. The
rest of the multiplication and addition tables is filled so that the definition
of the field is satisfied, that is

0 + 0 = 0, 1 + 0 = 0 + 1 = 1, 0× 0 = 0, 1× 0 = 0× 1 = 0.

You can easily verify that with these definitions, all properties of the field
stated above are satisfied.
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Other examples of fields are rational functions with rational or real or
complex coefficients, with usual operations of addition and multiplication.

Now, let us return to the original question: consider Rn, the set of column
vectors with real entries and usual operations of addition and multiplication
of a vector by a real number. Can one define a product of such vectors, so
that the result is a filed ?

It turns out that one can do this only in two cases: n = 1 (the usual
multiplication of real numbers) and n = 2 (the complex multiplication).
This remarkable fact follows from a theorem of Frobenius stated below.

This fact shows that R and C are quite exceptional.
You probably know the so-called vector product of vectors in R3. This

product does not turn R3 into a field, because it is not commutative and not
associative.

One can ask a more general question, whether we can define a product
in Rn which has all properties listed above, except one: commutativity. The
answer is given by the Frobenius theorem: An associative, distributive prod-
uct on Rn, such that all non-zero vectors have multiplicative inverses exists
only when n = 1, 2 or 4. When n = 1 and n = 2 these are real and complex
numbers, when n = 4 these are so-called quaternions.

In particular, there is no distributive, associative product on R3 such that
every non-zero vector has a multiplicative inverse.

The proof of the Frobenius theorem uses only linear algebra, and I can
recommend two places where you can read it. One is Pontryagin’s book
[1], chapter 4, section 26 B; this is an advanced book. Another is the little
book [2] which has no prerequisites, and explains everything (including linear
algebra) from the beginning. This book is aimed at high school students and
undergraduates.

2. There is another explanation why complex numbers (and real numbers)
are very special, unique objects in Mathematics. It is the equality |z1z2| =
|z1||z2|. Let us write it in an expanded form, with z1 = a+bi and z2 = c+di.
Then z1z2 = (ac− bd) + (ad + bc)i. Let us take squares of absolute values:

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad + bc)2. (1)

In other words, Product of sums of two squares is again is a sum of two
squares. Of course, every positive number is a sum of two squares of positive
numbers (in infinitely many ways). But the identity also implies that product
of sums of two squares of integers is again a sum of two squares of integers,
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which is not so trivial. And integers here can be replaced by anything for
which sums and products are defined and satisfy the usual rules, for example
by polynomials, rational functions etc. Relation (1) is just a formal algebraic
identity.

The question arises whether there are similar identities with sums of n
squares. Is the product of two sums of n squares always a sum of n squares?
It turns out that this is so only for n = 1, 2, 4 and 8. This is called a theorem
of Hurwitz.

The identity for n = 1 and n = 2 comes from multiplication of real and
complex numbers, for n = 4, an example of such identity comes from multi-
plication of quaternions, and for n = 8 from multiplication of the so-called
octaves of Cayley. Multiplication law of octaves (8-vectors) is distributive,
but neither commutative nor associative, and every non-zero octave has a
multiplicative inverse.

Another statement of the Hurwitz theorem is that multiplication of real
numbers, complex numbers, quaternions and octaves are the only possible
distributive multiplication laws with a unit in Rn, for which it is possible to
define a dot (scalar) product, such that the length of the product equals the
product of the lengths.

An elementary proof of Hurwitz’s theorem can be also found in the same
book [2].
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