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In this course we will make use of some important definite integrals.

1. Gamma function
Γ(x) =

∫ ∞
0

tx−1e−tdt.

Check that this integral converges for Rex > 0. Integrating by parts, we
obtain

Γ(x+ 1) =
∫ ∞
0

txe−tdt = −
∫ ∞
0

txd(e−t) = x
∫ ∞
0

tx−1e−tdt = xΓ(x).

Check that the non-integrated terms vanish. So

Γ(x+ 1) = xΓ(x). (1)

When x = 1 we obtain from the definition

Γ(1) = 1. (2)

Now for a positive integer n, using (1), (2) we obtain

Γ(n) = (n− 1)Γ(n− 1) = (n− 1)(n− 2)Γ(n− 2) = . . . = (n− 1)!.

So Γ(x) is a continuous function on the positive ray which interpolates (n−1)!
For x = 0, the integral defining Γ diverges, and one can also see from

(1) that Γ(0) cannot be a finite number. However one can rewrite (1) as
Γ(x−1) = Γ(x)/(x−1), and this equation defines Γ in the half-plane Rex >
−1, except the point 0. By repeating this argument, one can define Γ for
all complex values of x, except non-positive integers. At the non-positive
integers −n, Γ(−n) = ∞ in the sense that 1/Γ(−n) = 0. In fact 1/Γ is
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finite and continuous, actually analytic in the whole complex plane. Since
1/(Γ(z)Γ(1 − z)) is analytic in the whole complex plane and equals to 0
exactly at all integers, it is not a big surprise that

Γ(z)Γ(1− z) =
π

sinπz
.

That the constant of proportionality must be π can be seen by pluggng
z = 1/2 and using the evaluation of Γ(1/2) in the next section.

A very good approximation to Γ (and thus to the factorial) is given by
the Stirling formula:

Γ(z) = e(z−1)Logz
√

2πz + o(1), |Argz| ≤ π − ε,

where o(1) means a summand which tends to 0 as z → ∞, for any fixed
ε > 0. Here

Logz := log |z|+ iArgz, −π < Argz < π,

the so-called Principal branch of the complex logarithm. Stirling’s formula
is used every time when one needs to evaluate approximately any expression
involving Γ(z) for large z.

So, in particular

n! = nne−n
√

2πn+ o(1),

the approximation frequently used in combinatorics and probability.

Example. Derive the asymptotic expression for the central binomial
coefficient:

(2n)!

(n!)2
∼ 4n√

πn
, n→∞.

2. We will need the value Γ(1/2).
To obtain it make the change of the variable t = y2 in the integral:

Γ(1/2) =
∫ ∞
0

t−1/2e−tdt = 2
∫ ∞
0

e−y
2

dy.

We reduced Γ(1/2) to another important integral. Let is give it a (temporary)
name

I =
∫ ∞
0

e−x
2

dx.
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To evaluate it, take the product of two such integrals, consider it as a double
integral and switch to polar coordinates r = x2+y2 and θ, taking into account
that dxdy = rdr dθ:

I2 =
∫ ∞
0

e−x
2

dx
∫ ∞
0

e−y
2

dy =
∫ ∫

x>0,y>0
e−x

2−y2dxdy

=
∫ π/2

0

∫ ∞
0

e−r
2

r dr dθ =
π

2

1

2

∫ ∞
0

e−r
2

d(r2) =
π

4
.

So we obtain these important formulas:∫ ∞
0

e−x
2

dx =

√
π

2
, and Γ(1/2) =

√
π. (3)

These are two important integrals which frequently occur in mathematics
and applications.

3. The following integral is called the Fourier transform of the function e−x
2

F (t) =
∫ ∞
−∞

e−x
2

e−itxdx.

First of all, since our function is even,∫ ∞
−∞

e−x
2

dx =
√
π.

Second, we complete the square in the exponent:

e−x
2−itx = e−(x+it/2)

2−t2/4 = e−(x+it/2)
2

e−t
2/4.

Then we change the variable in our integral to y = x + it/2 and obtain the
result

F (t) =
√
πe−t

2/4.

To be sure, the change of the variable requires some justification, since we
integrate along a line in the complex plane. This is done in the Complex
Analysis courses with the help of Cauchy Theorem.

Taking real part of e−itx we also obtain∫ ∞
0

e−ax
2

cos(tx)dx =

√
π

2
e−t

2/4.
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Exercise. Generalize this result:

∫ ∞
−∞

e−ax
2/2e−itxdx =

√
2π

a
e−t

2/2a, a > 0.

which is entry 9 of the Table 2 on p. 223 of the book.

Application: volumes of balls and areas of spheres

Let us consider the ball Bn(r) of radius r its boundary Sn(r), which is
the sphere of radius rs in the space Rn.

It is clear by scaling that (n− 1)-dimensional “area” of Sn(r) is ωnr
n−1,

where ωn is the area of the unit sphere, and n-dimensional volume is

volume(Bn(r)) =
∫ r

0
tn−1ωndt = ωnr

n/n.

So one needs to find only ω.
To do this, we integrate e−‖x‖

2
over the whole space in two ways: first in

Cartesian coordinates,∫
Rn
e−‖x‖

2

dx =
(∫ ∞
−∞

e−x
2

dx
)n

= πn/2

by (3). Second, we integrate in the spherical coordinates∫
Rn
e−‖x‖

2

dx = ωn

∫ ∞
0

tn−1e−t
2

dt =
ωn
2

∫ ∞
0

un/2−1e−udu,

where we made the change of the variable u = t2, and the last integral is
Γ(n/2). So

ωn =
2πn/2

Γ(n/2)
,

where m = [n/2], the integer part of n/2. When n = 2, we obtain ω2 = 2π,
the length of the unit circle; when n = 3, we use Γ(3/2) = (1/2)Γ(1/2) =√
π/2, so ω3 = 4π, as Archimedes taught us.
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