Some definite integrals

April 4, 2021

In this course we will make use of some important definite integrals.

1. Gamma function

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

Check that this integral converges for $\operatorname{Re} x>0$. Integrating by parts, we obtain

$$
\Gamma(x+1)=\int_{0}^{\infty} t^{x} e^{-t} d t=-\int_{0}^{\infty} t^{x} d\left(e^{-t}\right)=x \int_{0}^{\infty} t^{x-1} e^{-t} d t=x \Gamma(x)
$$

Check that the non-integrated terms vanish. So

$$
\begin{equation*}
\Gamma(x+1)=x \Gamma(x) . \tag{1}
\end{equation*}
$$

When $x=1$ we obtain from the definition

$$
\begin{equation*}
\Gamma(1)=1 \tag{2}
\end{equation*}
$$

Now for a positive integer n, using (1), (2) we obtain

$$
\Gamma(n)=(n-1) \Gamma(n-1)=(n-1)(n-2) \Gamma(n-2)=\ldots=(n-1)!
$$

So $\Gamma(x)$ is a continuous function on the positive ray which interpolates $(n-1)$! For $x=0$, the integral defining Γ diverges, and one can also see from (1) that $\Gamma(0)$ cannot be a finite number. However one can rewrite (1) as $\Gamma(x-1)=\Gamma(x) /(x-1)$, and this equation defines Γ in the half-plane Re $x>$ -1 , except the point 0 . By repeating this argument, one can define Γ for all complex values of x, except non-positive integers. At the non-positive integers $-n, \Gamma(-n)=\infty$ in the sense that $1 / \Gamma(-n)=0$. In fact $1 / \Gamma$ is
finite and continuous, actually analytic in the whole complex plane. Since $1 /(\Gamma(z) \Gamma(1-z))$ is analytic in the whole complex plane and equals to 0 exactly at all integers, it is not a big surprise that

$$
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}
$$

That the constant of proportionality must be π can be seen by pluggng $z=1 / 2$ and using the evaluation of $\Gamma(1 / 2)$ in the next section.

A very good approximation to Γ (and thus to the factorial) is given by the Stirling formula:

$$
\Gamma(z)=e^{(z-1) \log z} \sqrt{2 \pi z+o(1)}, \quad|\operatorname{Arg} z| \leq \pi-\epsilon
$$

where $o(1)$ means a summand which tends to 0 as $z \rightarrow \infty$, for any fixed $\epsilon>0$. Here

$$
\log z:=\log |z|+i \operatorname{Arg} z, \quad-\pi<\operatorname{Arg} z<\pi
$$

the so-called Principal branch of the complex logarithm. Stirling's formula is used every time when one needs to evaluate approximately any expression involving $\Gamma(z)$ for large z.

So, in particular

$$
n!=n^{n} e^{-n} \sqrt{2 \pi n+o(1)}
$$

the approximation frequently used in combinatorics and probability.
Example. Derive the asymptotic expression for the central binomial coefficient:

$$
\frac{(2 n)!}{(n!)^{2}} \sim \frac{4^{n}}{\sqrt{\pi n}}, \quad n \rightarrow \infty
$$

2. We will need the value $\Gamma(1 / 2)$.

To obtain it make the change of the variable $t=y^{2}$ in the integral:

$$
\Gamma(1 / 2)=\int_{0}^{\infty} t^{-1 / 2} e^{-t} d t=2 \int_{0}^{\infty} e^{-y^{2}} d y
$$

We reduced $\Gamma(1 / 2)$ to another important integral. Let is give it a (temporary) name

$$
I=\int_{0}^{\infty} e^{-x^{2}} d x
$$

To evaluate it, take the product of two such integrals, consider it as a double integral and switch to polar coordinates $r=x^{2}+y^{2}$ and θ, taking into account that $d x d y=r d r d \theta$:

$$
\begin{aligned}
I^{2} & =\int_{0}^{\infty} e^{-x^{2}} d x \int_{0}^{\infty} e^{-y^{2}} d y=\iint_{x>0, y>0} e^{-x^{2}-y^{2}} d x d y \\
& =\int_{0}^{\pi / 2} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta=\frac{\pi}{2} \frac{1}{2} \int_{0}^{\infty} e^{-r^{2}} d\left(r^{2}\right)=\frac{\pi}{4}
\end{aligned}
$$

So we obtain these important formulas:

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}, \quad \text { and } \quad \Gamma(1 / 2)=\sqrt{\pi} \tag{3}
\end{equation*}
$$

These are two important integrals which frequently occur in mathematics and applications.
3. The following integral is called the Fourier transform of the function $e^{-x^{2}}$

$$
F(t)=\int_{-\infty}^{\infty} e^{-x^{2}} e^{-i t x} d x
$$

First of all, since our function is even,

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Second, we complete the square in the exponent:

$$
e^{-x^{2}-i t x}=e^{-(x+i t / 2)^{2}-t^{2} / 4}=e^{-(x+i t / 2)^{2}} e^{-t^{2} / 4}
$$

Then we change the variable in our integral to $y=x+i t / 2$ and obtain the result

$$
F(t)=\sqrt{\pi} e^{-t^{2} / 4} .
$$

To be sure, the change of the variable requires some justification, since we integrate along a line in the complex plane. This is done in the Complex Analysis courses with the help of Cauchy Theorem.

Taking real part of $e^{-i t x}$ we also obtain

$$
\int_{0}^{\infty} e^{-a x^{2}} \cos (t x) d x=\sqrt{\frac{\pi}{2}} e^{-t^{2} / 4}
$$

Exercise. Generalize this result:

$$
\int_{-\infty}^{\infty} e^{-a x^{2} / 2} e^{-i t x} d x=\sqrt{\frac{2 \pi}{a}} e^{-t^{2} / 2 a}, \quad a>0
$$

which is entry 9 of the Table 2 on p. 223 of the book.

Application: volumes of balls and areas of spheres

Let us consider the ball $B_{n}(r)$ of radius r its boundary $S_{n}(r)$, which is the sphere of radius r s in the space \mathbf{R}^{n}.

It is clear by scaling that $(n-1)$-dimensional "area" of $S_{n}(r)$ is $\omega_{n} r^{n-1}$, where ω_{n} is the area of the unit sphere, and n-dimensional volume is

$$
\operatorname{volume}\left(B_{n}(r)\right)=\int_{0}^{r} t^{n-1} \omega_{n} d t=\omega_{n} r^{n} / n
$$

So one needs to find only ω.
To do this, we integrate $e^{-\|\mathbf{x}\|^{2}}$ over the whole space in two ways: first in Cartesian coordinates,

$$
\int_{\mathbf{R}^{n}} e^{-\|\mathbf{x}\|^{2}} d \mathbf{x}=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{n}=\pi^{n / 2}
$$

by (3). Second, we integrate in the spherical coordinates

$$
\int_{\mathbf{R}^{n}} e^{-\|\mathbf{x}\|^{2}} d \mathbf{x}=\omega_{n} \int_{0}^{\infty} t^{n-1} e^{-t^{2}} d t=\frac{\omega_{n}}{2} \int_{0}^{\infty} u^{n / 2-1} e^{-u} d u
$$

where we made the change of the variable $u=t^{2}$, and the last integral is $\Gamma(n / 2)$. So

$$
\omega_{n}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}
$$

where $m=[n / 2]$, the integer part of $n / 2$. When $n=2$, we obtain $\omega_{2}=2 \pi$, the length of the unit circle; when $n=3$, we use $\Gamma(3 / 2)=(1 / 2) \Gamma(1 / 2)=$ $\sqrt{\pi} / 2$, so $\omega_{3}=4 \pi$, as Archimedes taught us.

