Laplace Transform

$f(t), t \ge 0$	F(s) = L(f)(s)
e^{at}	$1/(s-a), \ s>a$
t^n	$n!/s^{n+1}, \ s>0$
$\sin bt$	$b/(s^2+b^2), \ s>0$
$\cos bt$	$s/(s^2+b^2), \ s>0$
$u_a(t), \ a > 0$	$e^{-as}/s, \ s>0$
$\delta_a(t), \ a>0$	$e^{-as}, \ s>0$
$f_1(t) + f_2(t)$	$F_1(s) + F_2(s)$
cf(t)	cF(s)
f(at)	$a^{-1}F(s/a)$
f'(t)	sF(s) - f(0)
f''(t)	$s^2F(s) - sf(0) - f'(0)$
$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
$e^{at}f(t)$	F(s-a)
$t^n f(t)$	$(-1)^n (d^n/ds^n) F(s)$
$f_1 \star f_2$ (convolution)	F_1F_2 (usual product)

Partial fractions

- 1. Let p(s)/q(s) be a rational function. If $\deg p < \deg q$ go to the next step. If $\deg p \ge \deg q$, divide with a remainder to obtain p(s)/q(s) = h(s) + r(s)/q(s), where h is a polynomial and $\deg r < \deg q$. Then do the next step on r(s)/q(s).
- 2. Factor the denominator q(s). If you are working over complex numbers, all factors should be of degree 1, if over real numbers, all factors have to be of degree 1 or 2. Go to step 3 or 3'.
- 3. To each factor $(s-a)^n$ in the denominator correspond the following partial fractions

$$\frac{A_1}{s-a} + \frac{A_2}{(s-a)^2} + \ldots + \frac{A_n}{(s-a)^n}$$
.

If you are working over complex numbers, this is enough. Write the partial fractions with undetermined coefficients A_j and then find these coefficients by solving a system of linear equations.

3'. Over the real numbers, to each quadratic factor to the form $(s^2 + bs + c)^n$ corresponds a sum of partial fractions of the form

$$\frac{A_1s + B_1}{s^2 + bs + c} + \frac{A_2s + B_2}{(s^2 + bs + c)^2} + \ldots + \frac{A_ns + B_n}{(s^2 + bs + c)^n}.$$